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Abstract.  Amid increasing urbanization, changing climate, and 
limited stormwater infrastructure, urban flooding is a global issue, and 
Singapore is no exception. Traditional identification of flood-prone 
areas in Singapore has relied on historical flash flood data. However, 
by applying the booming influx of big data across various domains, 
including geography, weather, and DEM data, and using the deep 
learning model, Convolutional Neural Network (CNN), this research 
proposes a method that can accurately and effectively predict flash 
flood spots in an urban environment. Specifically, datasets including 
elevation, slope, aspect, rainfall, canals, drainage, and land use are fed 
into the CNN model to predict the locations of flash floods. The model, 
with a testing accuracy of 0.962, generates a comprehensive flash flood 
assessment map identifying high-risk areas in Singapore. Contrary to 
the current flood-prone area identification, which classifies only 0.79% 
of the country as susceptible to flash floods based on historical events, 
our CNN model-based assessment indicates that 11.4% of the country 
is at high risk. These newly identified zones are predominantly located 
along the coastline and in low-lying watershed outlets. Additionally, we 
propose corresponding stormwater infrastructure enhancements to 
mitigate flash flooding in these locations. 

Keywords.  Flash Floods, Flood Prediction, Convolutional Neural 
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1. Introduction 

In the context of escalating urbanization, shifting climatic conditions and inadequate 
stormwater infrastructural capacity, urban flooding presents a persistent global 
challenge, with Singapore being a prime example. This research delves into the factors 
contributing to urban flooding in Singapore and proposes a novel approach for 
predicting potential flash flood locations. 

Firstly, monsoon rainfall patterns in Singapore frequently challenge the capacity of  

stormwater drainage infrastructure with intense, short-duration rainfall events (Chow 
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et al., 2016). Secondly, the inefficiency of drainage systems during heavy rainfall, 
particularly in low-lying areas, exacerbates flooding risks. These areas, characterized 
by high groundwater levels, struggle with stormwater infiltration, leading to water 
accumulation and subsequent flooding (PUB, 2022). Thirdly, rapid urbanization, 
driven by population growth and economic development, has transformed substantial 
green spaces into impervious urban landscapes. The decrease in forest cover from 35% 
to less than 10% in Singapore (Chow et al., 2016) has resulted in reduced ground 
infiltration and increased surface runoff, thereby heightening flood risks. 

Historically, flood hotspots and prone areas in Singapore have been identified by 
the Public Utilities Board (PUB) based on past flooding events (PUB, 2021). However, 
these are reflective of historical rather than future flood risks. Advanced prediction of 
potential flash flood locations is crucial for guiding urban planners in implementing 
pre-emptive measures. Traditional flood mapping methods, such as linear logistic 
regression, have proven inadequate due to the complex nature of flooding (Jaafari et 
al., 2021). Although machine learning models like Random Forest (RF), Support 
Vector Machine (SVM), and Artificial Neural Network (ANN) have been employed 
in flood prediction (Choubin et al., 2019), their accuracy is limited due to the intricate 
interplay of natural input factors (Khosravi et al., 2019; Wang et al., 2019). 

The advent of more sophisticated models, such as Convolutional Neural Networks 
(CNN), has been proposed due to their superior performance over traditional machine 
learning models (Sameen et al., 2020; Bai and Peng). The availability of big data across 
various domains enables CNN to process vast amounts of data, leading to highly 
accurate predictions (Ghorbanzadeh et al., 2019). 

In addition, various stormwater management strategies, including Low Impact 
Development (LID), Water Sensitive Urban Design (WSUD), and Best Management 
Practices (BMPs), have been implemented globally for sustainable stormwater 
management (Fletcher et al., 2014). In Singapore, the Active, Beautiful, Clean Waters 
Programme (ABC projects) by the Public Utilities Board (PUB) incorporates 
infrastructures like bioretention swales and rain gardens to manage stormwater 
effectively (PUB, 2013). 

This research aims to utilize advanced model algorithms and the availability of big 
data to accurately predict potential flash flood locations in Singapore. Based on the 
predicted flash flood map, it proposes relevant strategies to mitigate flood risks. The 
outcomes of this research could provide valuable insights for urban planners in 
optimizing stormwater management infrastructure deployment. 

2. Study Area 

This study selects Singapore as the research site due to its susceptibility to urban 
flooding. Singapore, a highly urbanized city-state, experiences a typical tropical 
climate (Meteorological Service Singapore). The tropical climate in Singapore is 
characterized by heavy and abundant rainfall throughout the year (Meteorological 
Service Singapore). According to rainfall records from 1981 to 2010 provided by the 
Meteorological Service Singapore, the average annual rainfall at the study site is 
2165.9mm, with the highest monthly rainfall typically occurring in December, 
exceeding 200mm. Notably, due to the absence of detailed flood information and 
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rainfall data for Tekong Island in the northeastern part of the country, this research 
excludes the island from its scope.  

3. Methodology 

3.1. RESEARCH METHOD DIAGRAM  

Figure 1. Overall research method diagram 

3.2. INPUT AND TARGET VARIABLES  

Per the literature reviews, seven key factors closely related to flash floods have been 
identified, including slope, elevation, aspect, locations of drainage, locations of canals, 
rainfall, and Landsat Normalized Difference Vegetation Index (NDVI) (Tehrany et al., 
2014; Wang et al., 2019; Khosravi et al., 2019). The slope determines the rate of runoff 
and infiltration, while elevation plays a crucial role in deciding the species of plants 
covering the land. Aspect impacts soil moisture levels due to differences in solar 
radiation. The locations of drainage and canals are instrumental in determining the rate 
at which runoff is discharged. Rainfall is a critical factor as it decides the amount of 
runoff; notably, since flash floods are related to short but intense rainfall events, this 
research focuses on acquiring the highest rainfall data within a two-hour period each 
day in December, the month with the highest rainfall based on data from 1981 to 2010 
(National Environment Agency, 2023). The NDVI index, which reflects land surface 
characteristics, affects the speed of runoff and the infiltration rate. 

Regarding the data sources for these variables, slope, elevation, and aspect data are 
interpreted from Digital Elevation Model (DEM) data acquired from the National 
Aeronautics and Space Administration (NASA). QGIS is applied to process the DEM 
data into slope, elevation, and aspect data at a resolution of 30 meters. The locations of 
drainage and canals are compiled from the Public Utilities Board's (PUB) drainage 
reports and OpenStreetMap (PUB, 2023). The highest rainfall data over a two-hour 
period daily in December is sourced from the National Environment Agency (NEA), 

71



J. LI, R. STOUFFS 

 

gathered from 65 weather stations. NDVI is calculated using bands 4 and 5 from the 
Landsat 8 dataset, which categorizes the country's land cover into three categories: 
sparse vegetation, medium vegetation, and dense vegetation. Below Table 1 
summarizes input data sources and their specifications.  

 

Inputs  Sources Descriptions 

Slope  NASA's DEM  Resolution: 30 m x 30 m 

Elevation  NASA's DEM Resolution: 30 m x 30 m 

Aspect  NASA's DEM Resolution: 30 m x 30 m 

Drainage  OSM and PUB Format: shapefile 

Canal  OSM and PUB Format: shapefile 

Rainfall  NEA Unit: highest rainfall in 2 hours 

NDVI  Landsat 8  Resolution: 30 m 

Table 1. Input variables and their data sources. 

For the target variables, 91 flash flood spots and flood-prone areas have been 
identified by the Public Utilities Board (PUB) in their 2021 report. These identified 
areas, initially presented as polygons, are geoprocessed in this research into 957 point 
features for more precise analysis. These point features are then divided into two sets: 
80% for training and 20% for testing purposes. To ensure compatibility with the 
Convolutional Neural Network (CNN) model used in the subsequent analysis, all input 
and target variables are converted into raster format, maintaining consistent dimensions 
across the dataset. 

3.3. DATA PROCESSING 

The slope raster is generated using the 'Slope' function provided by the Geospatial Data 
Abstraction Library (GDAL) within QGIS, utilizing DEM data sourced from NASA. 
Similarly, the aspect raster is calculated using the 'Aspect' method from the GDAL 
library in QGIS, based on the same DEM data.  

Drainage and canal data are acquired and drafted in shapefile format. Their density 
is visualized using the 'Density Analysis' plugin in QGIS, which displays the density 
of canals and drainage within the study area in raster format. Rainfall data, obtained 
from the weather stations of the National Environment Agency (NEA), are denoted as 
points. These points are then converted into raster format using the 'Density Analysis' 
plugin in QGIS. The NDVI is calculated using the following formula (1):  

                                                 NDVI =  
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                                     (1) 

In the calculation of the NDVI, the NIR represents the near-infrared band, and R is 
the red band from the Landsat 8 satellite data. The value range of NDVI spans from -1 
to 1, with higher values indicating greater density of vegetation cover. Regarding the 
flood hotspots, the points indicating their locations are also converted into raster files 
using the 'Density Analysis' plugin in QGIS. This conversion facilitates a uniform 
format for analysis, ensuring consistency in data representation. All these datasets, 
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including slope, aspect, drainage and canal density, rainfall distribution, and NDVI, are 
stored in a raster format, maintaining the same dimensions across all data types. This 
uniformity is crucial for the accurate processing and analysis of the data in the CNN 
model. 

3.4. CNN-2D MODEL  

In this research, the CNN-2D model is employed to predict the susceptibility of flash 
floods, due to its proven high performance in the geoscience field (Wang et al., 2019). 
Initially, seven rasters containing information on the input factors are converted into 
JPEG images. These single-channel images are then stacked to create a multi-channel 
image with seven channels, each representing a different factor: aspect, density of 
canals, density of drainage, elevation, NDVI, rainfall, and slope. 

The multi-channel image, containing key flash flood factors, is divided into training 
(80%) and testing (20%) datasets for the CNN model. The target dataset is a flash flood 
assessment map created based on the density of existing flood hotspots. This map is 
also an image with five channels representing different levels of flood risk, categorized 
as follows: areas with 0-1 flash flood hotspots are identified as very low risk; 2-4 
hotspots as low risk; 4-6 hotspots as medium risk; 6-11 hotspots as high risk; and areas 
with more than 11 hotspots as very high risk. The multi-channel target image is split 
into training and testing datasets in the same proportion as the input factor image. 

The model's structure consists of six layers, excluding the input layer. The first layer 
is a Conv2D layer with 20 filters, each with a 3x3 kernel size, using the 'relu' activation 
function and 'same' padding. The second layer is a batch normalization layer. The third 
layer is a dropout layer with a rate of 0.5, followed by a fourth layer, a max pooling 
layer with a 2x2 pool size. The fifth layer is a Conv2D transpose layer with 15 filters, 
a 3x3 kernel size, and a 2x2 stride. The final layer is a convolutional layer with five 
filters using a softmax activation function. The model uses the Adam optimizer and 
categorical crossentropy as its loss function. It is trained over 20 epochs, aiming to 
minimize the loss value and maximize accuracy. The model's accuracy is evaluated 
using a testing target image and the specified formula (2): 

                  Accuracy =
Correct prediction of pixels

Total prediction of pixels
                                         (2)  

where the formula measures the rate of accuracy by measuring the amount of 
accurate predicted pixels versus the total predicted pixels. The parameters settings for 
the model are detailed in the following Table 2. 

Parameters Settings 

Convolutional kernel size 3x3 

Number of convolution units 20 

Max pooling kernel size 2x2 

Number of epochs 

Optimizer 

20 

Adam 

Learning rate 0.001 

Dropout rate 0.5 
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Table 2. Parameters settings of the model 

3.5. ASSESSMENT MAP OF FLASH FLOOD 

Once the CNN model is trained, this research inputs the multi-channel image, which 
comprises data on slope, elevation, aspect, locations of drainage, locations of canals, 
rainfall, and NDVI, into the model. Using the matplotlib library, a flash flood 
assessment map is then generated. This map differs from the initial flash flood hotspots 
map; it provides a comprehensive view of various levels of flash flood susceptibility 
across the entire study site. The metric used to determine the levels of predicted 
susceptibility to flash floods is consistent with the categorization applied in the flash 
flood hotspots raster used during the model's training phase. 

4. Results 

4.1. INPUT AND TARGET VARIABLES 

Figure 2. NDVI map 

This study uses grayscale raster maps to represent variables, with lighter pixels 
indicating higher values. Figure 2 shows as an example of one of the input variables, 
the Normalized Difference Vegetation Index (NDVI). Figure 3 presents a heatmap of 
flash flood hotspots using hexagons in varying shades of grey. The hexagon tones 
range from darkest (8-31 hotspots) to white (no hotspots), providing a clear 
visualization of flash flood risk levels in the area. 
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Figure 3. Flash flood hotspots map 

4.2. FLASH FLOOD ASSESSMENT MAP 

The trained model achieved an accuracy of 0.97, with a loss value of 1.28. The 
assessment map of flash floods predicted by the model is shown in Figure 4. The flood 
risk level on this map is related to the standards set for the target variable. In the target 
variable diagram, each hexagon measures 40 pixels by 50 pixels, totalling 900 pixels. 
The 'Severe Risk' level, represented by blue pixels, corresponds to the darkest hexagon 
in the target input diagrams. Each pixel in this category has a flash flood hotspot 
possibility ranging from 0.89% to 3.4%. The 'High Risk' level, depicted in green, 
indicates a possibility of flash flood hotspots for each pixel between 0.56% and 0.89%. 
The 'Moderate Risk' level, shown in orange, has a probability range for flash flood 
hotspots per pixel between 0.33% and 0.56%. The 'Low Risk' level, marked in yellow, 
corresponds to a flash flood hotspot possibility per pixel between 0.22% and 0.33%. 
The 'No Flood' level, represented by white colour, indicates areas where the possibility 
of flash flood hotspots per pixel is less than 0.22%. 

Additionally, the map calculates the percentage of each risk category across the 
entire study site. Specifically, 11.4% of the total site's pixels are in the 'Severe Risk' 
category, 5.7% are in the 'High Risk' category, 41.6% are in the 'Moderate Risk' 
category, 35.1% are in the 'Low Risk' category, and 6.1% fall into the 'No Flood' 
category.  

5. Discussions and Potential Strategies 

The current method employed by PUB for flash flood estimation, focusing only on 
previously flooded low-lying areas, identifies a mere 0.79% of the country as flood-
prone. In contrast, our CNN model-based flash flood assessment map reveals that 11.4% 
of the study area falls into the 'Severe Risk' category for flash floods, as depicted in 
Figure 4. These newly identified high-risk areas are mainly concentrated along coastal 
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lines and in low-lying watershed outlets, highlighted by the red box in Figure 4. The 
map's prediction of 'Severe Risk' areas allows for the proposal of targeted measures to 
reduce the occurrences of flash floods. In this research, with a focus on sustainable 
infrastructure, the potential for implementing green infrastructure is explored, as 
opposed to relying solely on hard infrastructure such as canals, drains, barriers, etc. 

Figure 4. Flash flood assessment map 

In the context of Singapore, a variety of green infrastructures, including rain 
gardens, bioswales, planters, and bioretentions, have been incorporated into the Active, 
Beautiful, Clean Waters (ABC) projects to effectively manage stormwater (PUB, 
2013). However, these infrastructures have diverse requirements and are chosen based 
on the specific conditions of each site (PUB, 2013). Drawing from PUB's Drainage 
Handbook and previous research papers, this study summarizes the conditions for 
implementing potential stormwater mitigation measures in Singapore in Table 3 (PUB, 
2013; Li et al., 2019; Fletcher et al., 2014). This summary provides insights into the 
suitability and effectiveness of various green infrastructure options in the context of the 
identified high-risk areas.  

To mitigate potential flash flood risks identified by the assessment map, appropriate 
green infrastructure measures can be implemented at or near these locations. However, 
precise stormwater management also requires analysing additional factors such as 
building density, green space density, watershed, flow direction, and road locations. 
For instance, bioretention basins need ample ground-level space, making them suitable 
for areas with low building density and abundant green spaces. Their optimal 
placement is often near watershed outlets. Vegetated swales are typically aligned with 
roads, so road locations are crucial for their placement. In contrast, roof gardens, green 
roofs, and planters, which require less space, are suitable for areas with high building 
density.  
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Infrastructures  Conditions Implemented Projects 

Bioretention basin  Open space  Balam Estate 

Vegetated swale                                             Open space; along road Margaret Drive 

Planter  Limited space Khoo Teck Puat Hospital 

Roof garden  Limited space; on buildings Orchard Central Mall 

Green roof  Limited space; on buildings Orchard Central Mall 

Table 3. Summary of stormwater management infrastructure 

Figure 5. An example of how specific type of infrastructure can match a severe flash flood pixel  

By overlaying all this information, including severe risk flood hotspots and the 
various aforementioned indices, the most appropriate stormwater infrastructure for 
each location can be determined. For example, a pixel in Figure 5 shows a low building 
index and close proximity to roads, suggesting the suitability of a vegetated swale. 
Future steps in this research will involve gathering detailed information on building 
density, green space density, watershed, flow direction, and road locations to further 
refine stormwater management strategies at high-risk flood locations. 

6. Conclusions 

This research addresses the severe issue of flash flooding in Singapore, intensified by 
rapid urbanization and land use changes. A novel method is developed, utilizing a 
range of geospatial data to train a Convolutional Neural Network (CNN) model for 
predicting potential flash flood locations. Key data inputs include slope, elevation, 
aspect, drainage and canal locations, rainfall, and NDVI. The trained CNN model 
successfully generates a detailed flash flood risk assessment map for Singapore, 
categorizing areas based on flood risk levels. The map reveals that 11.4% of the study 
area is at severe risk of flash flooding. The study also proposes categorization methods 
for these high-risk areas to guide the implementation of targeted stormwater 
management infrastructures, effectively combining predictive analytics with practical 
urban planning solutions for mitigating flash flood risks. 
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