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Abstract. The expansion of urbanization leads to significant changes 
in land use, consequently affecting carbon storage. This research aims 
to investigate the carbon loss due to land use alterations and proposes 
strategies for mitigation. Utilizing existing land use data from 2017 and 
2022, along with simulated data for 2025 generated by an ANN model 
and Cellular Automata, we identified changes in land use. These 
changes were then correlated with variations in carbon storage, both 
gains and losses. Our findings reveal a significant loss of 36,859 metric 
tons of carbon storage from 2017 to 2022. The projection for 2025 
estimates a further reduction, reaching a total loss of 83,409 metric tons. 
By employing the LISA method, we identified that low-carbon storage 
zones are concentrated in the southeast region of the research site. By 
overlaying these zones with areas of carbon storage loss, we pinpointed 
regions severely affected by carbon depletion. Consequently, we 
propose that mitigation strategies should be imperatively implemented 
in these identified areas to counteract the trend of carbon storage loss. 
This approach offers urban planners a solution to identify areas 
experiencing carbon storage decline. Moreover, our research 
methodology provides a novel framework for scholars studying similar 
carbon issues. 
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1. Introduction 

Singapore's population growth and urbanization have led to economic benefits but also 
changed the land use and land cover (LULC), posing urban challenges like carbon 
storage loss. Land use changes can decrease carbon storage and increase carbon 
emissions, worsening greenhouse gas emissions (Zhang et al., 2022). Research has 
explored the relationship between land use, carbon emissions, and storage. For instance, 
studies comparing land use changes over time estimate carbon loss (Zhang et al., 2022; 
An, 2022). Other research focuses on carbon storage and sequestration linked to 
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specific land uses, such as green roofs, forests, and wetlands (Shafique et al., 2020; 
Hung et al., 2021). 

In addition to comparing past land use changes, researchers also employ simulated 
land use maps to project potential future carbon changes. Simulation models, including 
Future Land Use Simulation (FLUS), Cellular Automata - Artificial Neural Network 
(CA-ANN), Markov-Flus, and Conversion of Land Use and its Effects at Small 
regional extent (CLUE-S), are utilized to predict future land use (Tong and Feng, 2019; 
He et al., 2022). The CA-ANN model, in particular, is widely used for its ability to 
integrate the strengths of both Cellular Automata (CA) and Artificial Neural Network 
(ANN). ANN interprets the nonlinear relationship between input and output data, while 
CA, as a spatially explicit model, effectively regenerates the dynamics of land use and 
land cover changes (Tong and Feng, 2019; Wu, 2002). Algorithms and models for 
projecting future LULC can be embedded into software plugins to facilitate the process. 
For instance, the Modules for Land-Use Change Simulation (MOLUSCE) plugin in 
QGIS employs multiple models and algorithms, including CA, ANN, Weights of 
Evidence (WoE), and Logistic Regression (LR), to simulate future land use based on 
necessary input variables such as previous land use maps, distance to transport systems, 
and slope (Muhammad et al., 2022). 

The Carbon Storage Index, linked to various Land Use and Land Cover (LULC) 
types, is essential for estimating carbon storage globally. Common LULC types, which 
vary by region, include cropland, forest, shrubland, grassland, and built-up areas (Zhu 
et al., 2021; Wang et al., 2022). Total carbon storage for each land use type is calculated 
by summing the carbon densities in four categories: aboveground, belowground, soil 
organic, and dead organic matter (Zhu et al., 2021; Wang et al., 2022; He et al., 2022). 

The carbon density index differs among LULC types and can vary for the same land 
use type in different regions or environmental settings (Zhu et al., 2021; Wang et al., 
2022; He et al., 2022). These indices are used in simulation models like the InVEST 
Carbon Storage and Sequestration model, developed by Stanford University’s Natural 
Capital Project, to predict carbon storage based on land use and carbon density indices. 
This model is widely utilized by researchers to estimate carbon sequestration across 
various land uses (Chen et al., 2017; Maanan et al., 2019; Zhu et al., 2021; Wang et al., 
2022; He et al., 2022). 

Addressing the need for accurate estimation of carbon storage to counteract losses 
due to land use changes, this research introduces a novel methodology for analysing 
and simulating carbon storage trends in Singapore utilizing machine learning and 
geospatial tools. The results enable the identification of critical carbon storage 
mitigation areas, characterized by low current carbon storage and projected future 
declines. Implementing targeted mitigation strategies in these areas is essential to 
enhance carbon sequestration. 

2. Methodology 

2.1. STUDY SITE 

Singapore, a densely populated city-state of 5.92 million people, as of June 2023, 
covers 734.3 km². It's projected to reach a population of 6.9 million by 2030 (Singapore 
Department of Statistics, 2023). Urbanization has been significant, with the entire 
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population living in urban areas, compared to 70% in the 1950s. The land use has 
transformed drastically: agricultural land has reduced to less than 1% and forested areas 
to about 23% (Fraser, 1952; Corlett, 1992; United Nations, 2018;). 

2.2. DATA 

This research utilizes multiple datasets as illustrated in Table 1.  

Data Types Data Sources Data Specifications 

LULC Data Sentinel-2 10m Land Use/Land 

Cover  

Time Stamp: 2017-2022 

Resolution: 10 meters 

Carbon Density Index Cities in Nature from National 

University of Singapore  

Carbon index of various land uses  

Unit: metric tons/hectare 

Format: Float number 

Road System Data OpenStreetMap Format: Polyline 

Digital Elevation Model (DEM) National Aeronautics and Space 

Administration (NASA) 

Resolution: 30 meters 

Carbon Storge Index of Plants  TreeSG under National Parks 

Board  

Carbon index of individual plants  

Unit: Kilogram /tree 

Format: Float number 

Table 1. Data types, sources, and specifications.  

2.3. METHOD 

2.3.1. Method Diagram 

Figure1. Summarized method diagram 

As illustrated in Figure 1, this study utilizes the LULC data from 2017 and 2022, along 
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with simulated LULC for 2025, to estimate carbon storage based on the carbon density 
index. By analysing the estimated carbon storage maps for these years, the study 
identifies changes in carbon storage. Areas experiencing a reduction in carbon storage 
are pinpointed. Additionally, the Local Indicators of Spatial Association (LISA) 
method is employed to detect areas with low carbon storage. Overlaying the identified 
carbon loss areas with low carbon storage regions highlights zones where carbon 
mitigation strategies are needed. Regarding such strategies, this research suggests the 
utilization of high carbon sequestration plants in areas pinpointed by the LISA analysis 
and those showing carbon loss. Further details on these methodologies and strategies 
will be elaborated in subsequent sections.    

2.3.2. LULC Changes 

This research aims to analyse the distribution of carbon storage and identify potential 
strategies to improve carbon storage in Singapore. The methodology primarily focuses 
on these two objectives. For analysing changes in carbon storage distribution, LULC 
maps from various time periods are required. Specifically, LULC maps from each year 
between 2017 and 2022 were collected from Sentinel-2 10m. The Modules for Land 
Use Change Simulations (MOLUSCE) in QGIS version 2.6.0 were used to simulate 
the predicted LULC map for 2025. The simulation process involves several steps using 
the MOLUSCE model.  

In the first step, essential spatial variables identified by previous literature 
(Muhammad et al., 2022), such as distance to road systems, the land use map of 2017, 
and DEM data, are incorporated into the model. Parameters for the initial year of the 
LULC map are set to 2017, and the final year to 2022, along with the aforementioned 
spatial variables, to train the simulation model. The second step, 'Transition Potential 
Modelling', is the training phase of the model. Necessary parameters for training 
include setting the sample mode to 'random', the number of samples to '1000', method 
to 'Artificial Neural Network (Multi-layer Perceptron)', neighborhood to '1px', learning 
rate to '0.100', maximum iterations to '1000', and hidden layers to '10'. These parameters 
are subjected to changes to enhance the accuracy of the trained model. Using optimal 
parameters, the trained model produces the predicted LULC map through the Cellular 
Automata Simulation method. Finally, the LULC map for 2022 is predicted. The 
predicted LULC map and the existing LULC map of 2022 are then compared to 
validate the model's accuracy using the kappa value, which is calculated via formula 
(1): 

                                           𝐾 = (𝑃𝑜 − 𝑃𝑒)/(1 − 𝑃𝑒)                                            (1) 

The Kappa coefficient, denoted as 𝐾, represents the probability that the predicted 
data and observed data match. 𝑃𝑜 is the probability of observed agreement, while 𝑃𝑒 
is the probability that agreement between the observed and predicted data occurs by 
chance. The value of the Kappa coefficient varies from -1 to 1, with higher values 
indicating better performance in predicting the Land Use and Land Cover (LULC) map. 
If the trained simulation model is validated as accurate, it is subsequently used to 
predict the LULC map for 2025. 
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2.3.3. Carbon Storage Changes  

Once the LULC maps for 2017, 2022, and 2025 are prepared, they are integrated into 
the InVEST model to calculate the carbon storage for each of these years. The InVEST 
model requires several input datasets. Specifically, the carbon density index acquired 
from the Cities in Nature project at the National University of Singapore, along with 
the LULC maps, are fed into the InVEST model. Consequently, the carbon storage 
maps for each year (2017, 2022, and 2025) are generated. The carbon storage values 
indicated by the maps created by the InVEST model are measured in metric tons per 
hectare (t/ha), as documented by The National Capital Project. 

By utilizing the Raster Calculator in QGIS to compare the changes in carbon 
storage over the three years (2017, 2022, and 2025), we have identified areas that have 
experienced gains and losses in carbon storage from 2017 to 2025. 

2.3.4. Local Indicators of Spatial Association (LISA) and Carbon Storage Miti-

gation Areas 

This research employs the LISA method to pinpoint areas where improving carbon 
storage is most needed. LISA categorizes the study site into four types: 'high-high', 
'low-low', 'high-low', and 'low-high', based on their carbon storage index. 'High-high' 
areas are those with high carbon storage surrounded by similar areas, while 'low-low' 
areas have low carbon storage and are surrounded by areas with similarly low storage, 
signalling a need for targeted improvement. 'High-low' areas are high carbon storage 
zones surrounded by low storage areas, and 'low-high' are the opposite. The 
classification is based on the LISA values (Anselin, 1995), with significant positive 
values indicating 'high-high' or 'low-low' clusters, and significantly negative values 
indicating 'high-low' or 'low-high' scenarios. 

To accurately identify areas needing carbon storage mitigation, the research 
overlaps 2022 and 2025 carbon loss areas with 'low-low' areas identified by LISA in 
ArcGIS. These overlaid maps reveal areas that have experienced or are projected to 
experience carbon storage loss and are in 'low-low' LISA categories, meaning these 
areas and their surroundings have low carbon storage. 

3. Results 

3.1. LULC CHANGES 

Figure 2 (top left and right) displays the LULC maps of 2017 and 2022, derived from 
Sentinel-2 10m Land Use/Land Cover data. Figure 2 (bottom left) presents the LULC 
map predicted by MOLUSCE in QGIS of year 2025. The accuracy of this predicted 
LULC map is validated by a high Kappa value in the MOLUSCE model, indicating 
85% correctness when comparing the predicted LULC map of 2022 with the existing 
LULC map of 2022 from Sentinel-2 10m data. By calculating the differences between 
LULC maps, this research identifies areas that have experienced LULC changes in two 
time periods: from 2017 to 2022 and from 2017 to the predicted 2025. 

From 2017 to 2022, most LULC changes are concentrated in the east and west parts 
of the country. In the eastern areas, these changes are predominantly from bare ground 
to built-up areas, denoted by blue colour, and from bare ground to grass, shown in 
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green. In the western areas, the major LULC changes include the transition from trees 
to built-up areas, represented by pink colour, and from trees to bare ground, indicated 
in blue. From 2017 to the predicted 2025, as depicted in Figure 3, the trend of LULC 
changes appears similar to those observed between 2017 and 2022. 

Figure 2. LULC map of 2017 (top left), LULC of 2022 (top right) and simulated LULC of 2025 
(bottom left) 

3.2. CARBON STORAGE CHANGES 

The InVEST model generated carbon storage maps for the years 2017 and 2022 
(Figure 4) and predicted the carbon storage map for 2025. According to the 2022 
carbon storage map, the carbon storage values range from 0 to 231.3 mg/ha. Low 
carbon storage areas are predominantly found in built-up regions, while high carbon 
storage is concentrated in central and western tree-covered or forested lands. 

By calculating the differences between these carbon storage maps in ArcGIS, this 
research has identified areas that experienced carbon storage gains and losses between 
two time periods: from 2017 to 2022 and from 2017 to 2025 (Figure 5). From 2017 to 
2022, the study site has experienced a loss of 36,859 metric tons of carbon storage. 
Looking forward, from 2017 to the predicted year 2025, the site is projected to lose an 

additional 83,409 metric tons of carbon storage. 

3.3. LISA DIAGRAM AND CARBON STORAGE MITIGATION AREAS 

The LISA diagram regarding year 2022, as shown in Figure 6, reveals that high-high 
value areas are primarily found in the central and western regions, while low-low areas 
are concentrated in built-up areas. 
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Figure 3. LULC changes from 2017 - 2025 

 

Figure 4. Estimated carbon storage of 2022 of Singapore 
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Figure 5. Carbon storage changes from 2017-2025 in tons/pixel (pixel unit: 4 hectares) 

Figure 6. LISA diagram of carbon storage of 2022 

To identify carbon storage mitigation areas, where carbon storage levels need to be 
improved, this research overlapped the carbon changes map with the LISA maps. Two 

overlap maps were created to showcase carbon storage mitigation areas for the two 
time periods, 2017 to 2022, and 2017 to 2025 (Figure 7). Each pixelated area, 
measuring 200 meters by 200 meters, belongs to the low-low areas as identified by the 
LISA maps, and all have experienced or are predicted to experience carbon storage 
loss. These areas of carbon storage loss are represented by two different colours on the 
maps, indicating two levels of carbon storage loss. This differentiation helps in 
prioritizing areas for intervention based on the severity of carbon storage loss.  
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Figure 7. Carbon storage mitigation map from 2017-2025  

4. Discussions and Potential Strategies 

This study uses LULC maps from 2017 and 2022 and a simulated map for 2025 to 
estimate carbon storage changes in Singapore using the InVEST model and data from 
the National University of Singapore. It finds a projected carbon loss of 36,859 metric 
tons from 2017 to 2022 and 83,409 metric tons from 2017 to 2025. The LISA diagram 
indicates that areas with low carbon storage are primarily located in the southeast 
region. By overlaying the carbon loss diagram with the LISA diagram, we identify 
crucial carbon storage mitigation areas—zones with low carbon storage that are also 
experiencing carbon loss. This overlay suggests the necessity for targeted carbon loss 
mitigation strategies. Such strategies may include transitioning land covers with low 
carbon storage indices to those with higher indices where feasible or introducing plant 
species known for their high carbon sequestration capacities into these areas to improve 
carbon storage. The potential of plant species for carbon sequestration has been 
extensively studied in relation to their Diameter at Breast Height (DBH) and Total 
Height (TH), offering insights into their role in mitigating carbon loss trends (Miah et 
al., 2020; Chave et al., 2005). 

A primary limitation of this research is the applicability of the carbon mitigation 
area map to specific contexts. For instance, Figure 7's red box highlights regions within 
Changqi airport's vicinity, which, according to the carbon mitigation map, would 
require land alteration to enhance carbon storage. Yet, modifying an airport's land use 
is not typically feasible. Therefore, the carbon mitigation map should be interpreted 
and applied in conjunction with realistic land-use considerations.  

5. Conclusion 

This research presents a novel approach to tackle carbon storage loss by analysing Land 
Use and Land Cover (LULC) changes from 2017 to 2025 in a specific study site. It 
finds a significant carbon storage loss—36,859 metric tons from 2017 to 2022 and a 
projected loss of 83,409 metric tons by 2025. Overlapping with low carbon storage 
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areas that identified by the LISA diagram, it finds out areas severely affected by carbon 
loss to designate 'carbon storage mitigation areas.' These identified regions require 
immediate implementation of mitigation strategies to augment carbon storage. 
However, a limitation of this research is that the map depicting carbon storage 
mitigation areas is a general representation, and greater specificity is required when 
employing this map as a guide for enhancing carbon storage levels.  
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