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Abstract. This paper introduces a graph neural network-based model 
for predicting pedestrian trajectories in architectural spaces. Compared 
to traditional simulations based on physics-based models, this data-
driven model has a stronger ability to learn and predict pedestrian 
behaviour patterns from real-world data. The model is pre-trained based 
on Hongqiao Railway Station Dataset, then trained and tested based on 
the ETH Dataset and the Stanford Drone Dataset, enabling comparisons 
with other AI models. By creating a more intelligent model, we can 
establish a digital replica of the real world that can predict pedestrian 
flow with higher accuracy in daily life or extreme situations such as 
sudden fires. Our results underscore the critical role of such models in 
comprehending how architectural spaces are utilized, and thus in 
improving architectural design and urban planning. 
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1. Introduction 
The prediction of pedestrian trajectories involves using pedestrian features or historical 
trajectories to anticipate future pedestrian movements. This is a pivotal topic in 
computer science and social science, and has gained widespread attention and 
application in areas like industrial robots, autonomous driving, spatial analysis, and 
design (Bendali-Braham et al., 2021). 

Pedestrians are intelligent agents who can naturally navigate and avoid obstacles in 
complex environments. They possess an inherent theory of mind, which allows them 
to reason about other people's actions in terms of their mental states (Gweon et al., 
2013). Therefore, an effective pedestrian trajectory prediction model must not only 
perceive the environment but also perceive and anticipate the behaviors of neighboring 
agents. 

There are numerous multi-agent behavior prediction methods, ranging from 
traditional cellular automata models and social force models to neural network-based 
regression models, generative models, and more. However, many of these methods 
mechanistically simplify agent behavior, failing to model agents as entities capable of 
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perception, prediction, and decision-making. Our goal is to implement a model where 
each agent can perceive its surrounding environment, including obstacles and 
neighboring agents, and combine temporal features to predict the behavior of other 
agents before making its own decisions. The model parameters should be learnable, 
allowing for continuous optimization using real-world data. 

2. Related Work 

2.1. PHYSICS-BASED APPROACHES 
The Social Force Model is a classic physics-based model that describes pedestrian 
movement. Based on Newtonian mechanics, this model assumes that pedestrians move 
under the influence of social forces (Helbing et al., 1995). Pedestrians are subjected to 
three types of forces: self-driven force, interpersonal force, and the force between 
individuals and obstacles. 

Physics-based models align with the intuitive understanding of individual 
movement, with straightforward modelling and computation processes. However, they 
simplify pedestrians into particles, ignoring the individual's comprehensive perception 
capabilities, decision-making abilities, and randomness. Additionally, because the 
formulas involve many empirical parameters such as the avoidance range, these 
models lack generalization ability. The simulation of specific scenarios depends on 
subjective parameter adjustments or experiments, thus the practical application and 
validation present considerable challenges due to their higher usage threshold. 

2.2. CLASSIC MACHINE LEARNING-BASED MODELS 
In contrast to physics-based models, classic machine learning-based models analyze 
historical data to predict future trajectories. Specific methods include Kalman filtering, 
support vector regression models, hidden Markov models, and more. 

The Kalman filtering method can account for the randomness of the motion 
process. The individual's uncertainty can be modelled by the Gaussian distribution 
(Narayanan et al., 2021). In each time step, the hidden states are first calculated and 
updated, and the mean and covariance matrix of the states in the next time step are 
predicted to represent the uncertain pedestrian movement. 

Support Vector Regression (SVR) can learn the behaviour of agents in complex 
environments. It uses a kernel function to project input data into high-dimensional 
space, conducts regression prediction, finds the most probable movement strategy, and 
thus predicts future trajectories. 

2.3. DEEP LEARNING-BASED MODELS 
Classic machine learning-based methods are suitable for simple prediction scenarios 
and short-term prediction tasks. However, in recent years, deep learning-based 
trajectory prediction methods have become increasingly popular. These models 
consider various factors, such as physical factors, environmental factors, and the 
influence of neighbouring agents, and can be continually optimized through training. 
By using transfer learning, they can adapt to diverse scenarios. 
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Sequential models are capable of extracting historical trajectory features. It stores 
and updates information in hidden layers to predict the output. Alahi et al. (2016) 
proposed the Social LSTM for predicting pedestrian trajectories in crowded spaces. 
The attention mechanism is increasingly being employed in trajectory prediction tasks. 
Messaoud et al. (2020) used a multi-head attention mechanism to emphasize the impact 
of adjacent vehicles, achieving competitive trajectory prediction performance. 

Graph Neural Networks (GNNs) rely on message aggregation processes for 
prediction. Agents in the environment are represented as nodes, and relationships 
between agents are represented as edges. GNNs excel at aggregating spatial 
information and handling dynamic data, making them well-suited for complex 
trajectory scenarios. Shi et al. (2021) introduced SGCN for pedestrian trajectory 
prediction. The results demonstrate that it effectively captures adaptive interactions 
between pedestrians and their motion tendencies. 

Generative models can be utilized for generating diverse trajectories. Notably, 
some of these methods have shifted their focus from predicting trajectories to 
predicting the distribution of trajectories. This shift better supports downstream tasks 
such as trajectory matching. Dendorfer et al. (2020) presented Goal-GAN, an end-to-
end trajectory prediction model that generates diverse trajectories consistent with 
physical constraints. Xu et al. (2022) introduced SocialVAE to capture the uncertainty 
and multi-modality of human navigation decision-making. 

3. Methodology 
Our objective is to predict pedestrian trajectories based on their features and historical 
trajectories within built environments. 

● Pedestrian trajectories represent temporal data which can be efficiently encoded by 
sequential models. 

● Architectural spaces often contain various obstacles, such as walls and atriums. 
Pedestrians have the ability to perceive their surroundings, so an environment 
encoder can be used to gather spatial information. 

● Pedestrians also have the ability to perceive and anticipate the actions of other 
individuals. Therefore, neighbour information should be aggregated through 
message aggregators in graph network layers. 

● To learn the distribution of pedestrian features from real-world data, we introduce a 
feature generation model. 

In summary, we present a hybrid trajectory prediction and generation model that 
consists of Temporal Convolutional Networks (TCN) for trajectory encoding, CNNs 
for environmental encoding, graph message aggregators for compiling neighbour 
information, and Conditional Variational Autoencoder (CVAE) for synthesizing 
pedestrian features. In the output section, we employ a Multilayer Perceptron (MLP) 
to merge the features obtained earlier and to predict the mean and variance of the 
trajectories. This model is named the Graph Temporal Convolutional Network 
(GTCN). We optimize the predicted values to match the ground truth by minimizing 
the negative log likelihood of the Gaussian likelihood function. 
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3.1. TRAJECTORY ENCODER 
Trajectory is a type of temporal sequence data. We represent the pedestrian location at 
a given moment with two-dimensional coordinates. The sampling interval for the 
trajectory is denoted as t_interval, and the interval length is denoted as interval_length. 
Note that as time progresses, the interval_length gradually increases. Therefore, we 
capture the data up to a maximum time duration of max_length. Consequently, for n 
pedestrians, the shape of the trajectory data is (n, max_length, 2). It is important to 
recognize that the historical trajectory lengths of pedestrians do not always equate to 
max_length, necessitating the use of a variable-length temporal encoder. 

Temporal models in deep learning include LSTM, TCN, Transformer, and others. 
LSTM introduces gated units that can store and forget memories, making it well-suited 
for processing temporal information. However, it calculates by the sequence order, 
which is not easily parallelizable, making it slow for long sequence data. The 
Transformer does not use recursive structures, allowing for parallelization to speed up 
computations and effectively managing long-distance dependency information. 
However, it has a large number of model parameters, requiring extensive training data 
and computational resources, and it is prone to overfitting on short sequences. 

TCN is a variant of CNN that processes temporal data through convolution. It can 
compute in parallel, flexibly adjust its receptive field based on the size of the 
convolutional kernel to acquire information from different temporal scales, and with 
fewer model parameters, it is easier to train and less likely to overfit, making it suitable 
for encoding trajectory information with lengths from single to tens of digits. Therefore, 
we choose TCN as our trajectory encoder.  

Figure 1. Model structure of GTCN. 
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3.2. MAP ENCODER 
The architectural spaces are complex and diverse, encompassing walls, atria, ramps, 
furniture, and more. Pedestrians can perceive these obstacles and adjust their 
movement strategies accordingly. Therefore, it's crucial to encode obstacle information. 

The Signed Distance Field (SDF) is commonly used in computer graphics. It 
represents a distance field where each point stores the distance to the nearest object. In 
our case, we consider all inaccessible areas within the space as obstacles and compute 
the Signed Distance Field of that space, denoted as SDF_space, to represent the global 
environmental information. For the k-th pedestrian, we extract a surrounding fixed-size 
SDF_k to represent the local environmental information. We then input SDF_k into a 
map encoder. We use a CNN as the encoder, utilizing a five-layer structure of Conv2d 
- ReLU - MaxPool2d for convolution and pooling. This is followed by a fully 
connected layer, which outputs a 64-dimensional vector to serve as the environmental 
encoding. 

Figure 2. Left: global Signed Distance Field. Right: local Signed Distance Field. 

3.3. GRAPH NEURAL NETWORK 
Pedestrians as sentient beings, are capable of perceiving and predicting the movements 
of nearby pedestrians. To avoid collisions or catch up with companions, they adjust 
their movements accordingly. Therefore, we introduce Message Aggregators to gather 
neighbourhood information. 

The perception range of a pedestrian is relatively fixed, but the number of other 
pedestrians within this range constantly changes. This requires a model that can handle 
complex non-Euclidean data. Graph Neural Networks (GNNs) are particularly suitable 
for this task. We represent the features of agents as nodes and compute the distance 
between each pair of nodes. We then assign an edge to every pair of nodes that are 
within a certain distance threshold. Nodes and edges are fed into a Graph Convolutional 
Network layer for aggregation. The number of layers in the graph is a significant hyper-
parameter. Through experimentation, we found that 1 to 2 layers of GCN can 
effectively aggregate neighbour information. In contrast, more than 3 layers, although 
capable of collecting long-distance information, may lead to over-smoothing. 
Therefore, we set the number of layers to 2. 
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3.4. CONDITIONAL VARIATIONAL AUTOENCODER 
When applying a trajectory prediction model to the pedestrian flow simulation within 
architectural spaces, a key issue is initializing pedestrian features. In common trajectory 
prediction tasks, the initial features of an object, namely its historical trajectory, serve 
as inputs to the model. However, in the task of predicting flow within a building space, 
we typically use path-finding algorithms to determine the starts and goals of the 
pedestrians. Additional features, such as historical trajectory, body gait and stride, need 
to be manually set or generated out of thin air. By learning the distribution of pedestrian 
features in dataset, we can generate reasonable feature while avoiding complex manual 
inputs. The starts and goals can be used as conditions to guide the feature initialization 
for the generative model. 

Common generative models include Variational Autoencoders (VAE), Generative 
Adversarial Networks (GAN), and Diffusion Models. GAN consists of a generator (G) 
and a discriminator (D), which iteratively optimize during the training process to 
generate highly convincing data. However, GANs are difficult to train and can fall into  
producing overly limited samples. Diffusion Models have recently become a popular 
generative model, especially in the field of image generation. They can produce high-
quality samples but require a considerable number of time steps in the diffusion 
process, leading to high computational time and resource requirements. 

VAE compresses data into latent vectors through an encoder and then uses a 
decoder to generate data from the latent vector. It optimizes the reconstruction accuracy 
by comparing the original data with the reconstructed data to minimize the Mean 
Squared Error (MSE) loss and generate data from noise by pushing the latent vector 
towards a standard normal distribution to minimize the Kullback–Leibler divergence 
(KL) loss. VAE has a low computational cost and are suitable for learning continuous 
and smooth features, thus is able to generate structurally simple pedestrian features. 
Further, by concatenating generation conditions to the latent vector, we can achieve a 
conditional generation model. 

Figure 3. Left: training of Conditional Variational Autoencoder. MSE loss will be calculated 
between label trajectory and reconstructed trajectory. KL loss will be calculated in hidden states. 

Right: generate trajectory data from start location, end location and Gaussian noise. 
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4. Experiment 

4.1. SHORT-TERM PREDICTION ON VIDEOS 
To visually assess the efficacy of our model, we conducted an experiment using videos. 
We captured a video of a pedestrian intersection at Shanghai Hongqiao Railway 
Station, spanning a duration of 90 minutes with a frame rate of 30 and containing a 
total of 162,000 frames. We employed YOLOX (Ge et al., 2021) as the object detector 
to detect pedestrians and ByteTrack (Zhang et al., 2022) as the object tracker to obtain 
continuous pedestrian trajectories. 

For each pedestrian at each moment, the object detector provided a four-
dimensional dataset containing the top-left corner coordinates, as well as the width and 
height of the detection box. In this case, we not only predicted the coordinates but also 
the width and height of the detection box. We considered a maximum historical length 
of 8 frames, which served as input to predict the trajectory for the next 12 frames. We 
divided all 162,000 frame data into 8100 groups with 20 frames per group, further 
dividing them into 80% training set, 10% validation set, and 10% test set. We employed 
Average Displacement Error (ADE) to calculate the prediction error (Yue et al., 2022). 
ADE was calculated as the L2 error between a predicted trajectory and the ground truth. 
We used the mean of the predictions as the trajectory prediction value and visualized 
the predicted variance as the thickness of the detection box. We used a batch size of 
128, a learning rate of 0.005, and an Adam optimizer. After about 50 epochs, ADE was 
reduced to about 4.1 pixels. As a comparison, when using Kalman filtering as 
prediction model, the ADE is approximately 7 pixels, which shows that the AI model 
performs much better than the traditional model. 

Figure 4. Left: the ground truth of detection box trajectory, with a length of 12 frames, corresponding 
to 0.4 seconds. Middle: the predicted detection box trajectory with a length of 12 frames. The 

predicted values are very close to the ground truth. Right: the long-term predicted trajectory obtained 
by iterating the prediction results, with a length of 60 frames, corresponding to 2 seconds. 
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4.2. COMPARISON ON OPEN SOURCE DATASETS 
To ensure the versatility of our trajectory prediction model, we pretrained it on the 
Hongqiao Railway Station Dataset and fine-tuned it on the ETH Dataset (Pellegrini et 
al., 2009) and the Stanford Drone Dataset (Robicquet et al., 2016). This approach 
enabled the model to adapt to different scenarios. 

We compared our model with S-GAN (Gupta et al., 2018) , Sophie (Sadeghian et 
al., 2019) , Trajectron++ (Salzmann et al., 2020) , SGCN (Shi et al., 2021) on the ETH 
and SDD datasets. Note that the Social Force Model is a traditional physics-based 
model that requires manual parameter settings and destination settings, which are not 
included in the dataset. Therefore, it cannot be directly compared with other trajectory 
models. The test metrics were ADE and FDE, and the test results are summarized in 
the following table. 
Table1. Results on ETH/UCY and SDD. Our model outperforms baseline methods in both ADE and 

FDE. 

4.3. MODEL APPLICATION IN ARCHITECTURAL SPACES 

The simulation of pedestrian movement in architectural spaces typically involves two 
main components: global path-finding for each agent to reach their destination, and 
local motion modeling to simulate agent movement. Path-finding typically utilizes 
heuristic algorithms such as A*, while the motion modeling aspect uses a motion model 
at the local level (Mashhadawi, 2016). The building traffic system encompasses both 
horizontal and vertical traffic elements. Horizontal traffic includes floors, carpets, and 
other walking areas, while vertical traffic includes escalators, elevators, and evacuation 
stairs. 

To model the reachable building space for pedestrian simulations, we represent it 
as a graph. Each floor that is reachable is divided into grids, and each grid serves as a 
node in the graph. Edges are established between adjacent nodes. Then, we randomly 
distribute or manually input the initial positions and destinations of pedestrians, use 
path-finding algorithms to determine the path for each pedestrian. We utilize the 
trajectory prediction model as a motion model to simulate the local movement of the 
crowd. For each newly generated agent, we consider their starting point and 
destination, generate initial features using the CVAE model, and input them into the 
trajectory prediction model to predict their movement. The trajectory prediction model 

Methods Metrics ETH Hotel ZARA1 ZARA2 SDD 

S-GAN ADE 

FDE 

0.82 

1.52 

0.70 

1.63 

0.33 

0.69 

0.42 

0.81 

27.23 

42.60 

Sophie ADE 

FDE 

0.70 

1.40 

0.76 

1.68 

0.31 

0.63 

0.38 

0.80 

17.21 

29.34 

Trajectron++ ADE 

FDE 

0.71 

1.68 

0.22 

0.46 

0.30 

0.78 

0.23 

0.60 

17.90 

30.83 

SGCN ADE 

FDE 

0.87 

1.62 

0.68 

1.38 

0.33 

0.69 

0.42 

0.83 

30.31 

41.76 

GTCN (Ours) ADE 

FDE 

0.68 

1.49 

0.23 

0.44 

0.29 

0.63 

0.21 

0.69 

22.81 

34.43 
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predicts the movement of each pedestrian for 12 frames, approximately 0.4 seconds, 
and then updates their position and trajectory in a loop until they reach the exit. After 
calculation, approximately 780 updates and 312 seconds later, all pedestrians have 
exited the building. We accumulate the positions of all pedestrians over time to create 
a spatial distribution heatmap. This heatmap allows us to quantitatively identify 
crowded areas and optimize the design accordingly. 

Figure 5. Left: Path-finding algorithms. The red lines represents the route. Right: Representation of 
the simulation results using a heatmap. The red areas indicate potential congestion zones. 

5. Conclusion 

Pedestrians are intelligent individuals, with the ability to perceive crowds and 
environments and predict the behavior of others. Pedestrians can move regularly, but 
may also change their intentions to make unpredictable movements. Therefore, 
physics-based models, such as Social Force Model, are difficult to simulate diverse 
pedestrian behaviors. We have built a novel AI model, called GTCN, to predict 
pedestrian trajectories in architectural spaces. The model comprehensively considers 
the perception and prediction abilities of pedestrians, as well as the diversity of 
pedestrian characteristics. 

Video experiments have shown that GTCN can simulate trajectories with higher 
accuracy than traditional Kalman filters. Experiments on open-source dataset have 
shown that GTCN outperforms other AI models. We applied the model in architectural 
spaces to predict pedestrian distribution and movement. Through quantitative analysis, 
we obtained indicators such as spatial distribution heatmaps. Based on visual results, 
architects can identify design vulnerabilities such as congestion or accident-prone 
areas, to optimize building efficiency or improve safety. 
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