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Abstract. The rise of deep learning has introduced novel 
computational tools for urban block design. Many researchers have 
explored generative urban block design using either rule-based or deep 
learning methods. However, these methods often fall short in 
adequately capturing morphological features and essential design 
indicators like building density. Latent diffusion models, particularly in 
the context of urban design, offer a groundbreaking solution. These 
models can generate cityscapes directly from text descriptions, 
incorporating a wide array of design indicators. This paper introduces a 
novel workflow that utilizes Stable Diffusion, a state-of-the-art latent 
diffusion model, to generate 3D urban environments. The process 
involves reconstructing 3D urban block models from generated depth 
images, employing a systematic depth-to-height mapping technique. 
Additionally, the paper explores the extrapolation between various 
urban morphological characteristics, aiming to generate novel urban 
forms that transcend existing city models. This innovative approach not 
only facilitates the accurate generation of urban blocks with specific 
morphological characteristics and design metrics, such as building 
density, but also demonstrates its versatility through application to three 
distinct cities. This methodology, tested on select cities, holds potential 
for broader range of urban environments and more design indicators, 
setting the stage for future computational urban design research. 

Keywords.  deep learning, generative design, latent diffusion model, 
urban block morphology, artificial intelligence. 

1. Introduction 

Urban block design, a critical facet of urban planning, has been transformed by novel 
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generative design methods, introducing advanced computational tools. Despite 
significant research employing rule-based and deep learning methods for generative 
urban block design, these approaches often inadequately capture essential 
morphological features and design indicators like building density.  

Latent diffusion models present innovative solutions for urban block design. These 
models can generate cityscapes directly from text descriptions, which encompass 
various design indicators. These models can also be customized for different cities, 
enhancing their adaptability in capturing diverse urban characteristics. They can even 
be conditioned based on input masks to better represent the surrounding urban context. 

This study introduces a cutting-edge workflow for creating 3D urban models using 
the advanced latent diffusion model, Stable Diffusion (Rombach et al., 2021). Our 
methodology includes: (1) dataset development, (2) model fine-tuning, and (3) model 
evaluation. We initially generated paired depth images and text data from 3D urban 
models, utilizing OpenStreetMap to source data from cities like Berlin, Hamburg, and 
Cambridge, chosen for their unique traits. Depth mapping and segmentation into 
patches were conducted to calculate crucial design metrics, such as building density. 
These metrics, combined with image data, formed our dataset. Subsequently, we fine-
tuned the Stable Diffusion model using Dreambooth (Ruiz et al., 2023). The model's 
performance was assessed by comparing generated quantitative metrics with actual 
data. 

In the post-processing step, we input urban morphology keywords and building 
density into the model to produce depth maps, which were then used to reconstruct 3D 
urban blocks using the depth-to-height mapping obtained from the dataset creation 
process. Our parametric generation process enables adjustment of building heights to 
meet exact building density input constraints. We also experimented interpolating 
between different urban morphological characteristics to extrapolate novel urban forms 
beyond existing cities.  This workflow holds potential for broader application across 
more cities and diverse design indicators. 

2. Related Work 

2.1. RULE-BASED URBAN BLOCK GENERATION 
Early development in computational urban block generation usually involves use of 
rule-based algorithms. Rahimian, M. proposed the use of shape grammar for generative 
urban design in San Diego (Rahimian, M. et al. 2019). Specifically, Kelly (2021) 
developed a rule-based urban modelling platform to transform 2D data into 3D urban 
models. This method enables users to promptly tailor their models to urban design 
objectives. However, finding a rule writer for this approach is tough. It needs urban 
design expertise, some math understanding, and rule-to-algorithm skills. Also, it's 
complex for non-computer experts in early urban planning. 

2.2. GAN-BASED GENERATION 
With the development of deep generative models such as Generative Adversarial 
Networks (GANs), significant strides have been made in urban block generation. 
Fedorova (2021) employed GANs (Goodfellow et al. 2014) for predicting urban block 
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layouts, learning from the surrounding urban context. Tian et al. (2021) utilized 
Pix2Pix for generating urban layouts based on boundary shapes, while Boim et al. 
(2022) applied Pix2Pix GANs for creating non-planned settlements from existing 
urban features. Researchers have increasingly used additional conditions to enhance 
GAN outputs. Shen et al. (2020) integrated constraints like roads and landscapes, Liu 
et al. (2021) included factors such as boundaries and water features, and Zhong et al. 
(2022) explored a GAN Data Label Setting (DLS) for customizable urban designs. 

2.3. LATENT DIFFUSION MODEL: TEXT-TO-IMAGE GENERATION 
Text-to-image models, integrating natural language processing and computer vision, 
bridge textual and visual domains. Mansimov et al. (2015) pioneered image generation 
from natural language descriptions using deep neural networks. Building on GANs 
(Goodfellow et al. 2014), Wang et al. (2018) developed a method for creating images 
from semantic label maps using conditional GANs. Ramesh et al. (2021) explored a 
text-to-image generation method using an autoregressive transformer. Dhariwal (2021) 
suggested diffusion models surpass GANs in image quality, leading Rombach (2022) 
to create latent diffusion models (LDMs) that accept multiple conditions like text, 
image, and semantic maps in latent space. Recently, Ruiz et al. (2023) introduced 
Dream Booth, a fine-tuning approach for LDMs for specific applications. These 
advancements underscore the feasibility of generating urban designs from textual 
representations and hold promise for large-scale urban generation with flexible control. 

3. Methodology 
Our steps of model training and conditional generation is shown in Figure 1 

 Figure 1. Research Methodology Diagram 
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3.1. DATASET CREATION AND AUGMENTATION  
Depth Image from 3D City Model Data. From OpenStreetMap (OSM), we extracted 
3D city models of several cities with unique morphology at Level of Detail2(LoD2) 
which allow various shapes of building geometry including pyramids, domes and 
gabled, skillion roofs, enriching the diversity of urban context. The city models are then 
rendered with z-depth information. We normalized the depth values by placing blocks 
with the same maximum height to ensure consistent value range mapping for urban 
blocks with various density conditions. The city depth map was then sliced into 
300*300-meter segments representing individual urban blocks. 

Textual Data Generation. Figure2 shows a threshold-based algorithm was 
employed to count building density by dividing the number of pixels in the ground 
floor of each depth map by the total number of pixels and output as textual data that 
are associated with depth maps then paired to form a training dataset.  For each city 
morphology characteristic, we prepared 800 data pairs, culminating in a total of 4800 
pairs. 

Figure 2. Depth map render and automatically building density labelling 

3.2. TEXT-TO-DEPTH-IMAGE GENERATION WITH FINE-TUNED LA-
TENT DIFFUSION MODEL  

Text-to-Depth-Image Generation with Latent Diffusion. We leverage the cross-
modality characteristics of latent diffusion models to learn the mapping from text to 
depth map. We chose Stable Diffusion version 1.5, the State-of-the-Art latent diffusion 
model as our base model, which is capable of generating high-quality images from text 
inputs. Stable Diffusion models can also be fine-tuned using methods such as 
DreamBooth (Ruiz et al., 2023) or LoRA to implant novel a-prior knowledge to adapt 
to more use cases. 

Fine-Tuning Latent Diffusion Model. Our objective is to "implant" new (key, 
value) pairs into the "dictionary" of the diffusion model so that given the key for our 
subject, the production of depth maps of particular city and density by a text prompt 
using DreamBooth (Ruiz et al., 2023). The first step is to insert the depth image subject 
instance into the model and connect the depth map subject to a distinctive identifier. So 
we input 4800 depth images with three different city which paired with a text prompt 
containing two unique identifier which reflect the certain city style and accurate 
building density value, also the name of the class the subject belongs to (e.g., “[ X City 
Style] , [Density_Y] ,City Plan View ”). In this way our depth images with the same 
city style and building density values share the same two unique identifiers, allows 
pairing the corresponding semantics and pictures in the process of reconstructing U-
Net's Loss values, so that our trained model can generate depth maps corresponding to 
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the key design metrics based on different text prompts. In parallel, we apply a class-
specific prior preservation loss:  

 
𝔼!,#,ϵ,ϵ′,$"𝓌$ ∥ 𝑋&θ(α$x + σ$ϵ, c) − x ∥%%+ λ𝓌$′ ∥ 𝑋&θ(α$′x&' + σ$′ϵ′, c&') − x&' ∥%%.,  
 
which leverages the semantic prior that the model has on the class and encourages it to 
generate diverse instances belonging to the subject’s class using the class name in a 
text prompt (e.g., “City Plan View”). 

3.3. TESTING AND EVALUATION 
Text-to-image tasks face challenges in quantitatively evaluating design indicator 
accuracy. We addressed this by combining quantitative analysis with image generation, 
dividing our dataset into training and validation sets. For model fine-tuning, the 
validation set's density values 'y' were used to generate and evaluate depth maps, 
comparing predicted and actual 'y' values. The L1 loss across these sets gauged model 
accuracy. This process, crucial for model selection, does not affect DreamBooth 
training convergence but aids in identifying the model with the best metrics. 

3.4. 3D POST-PROCESSING 
Our approach incorporates a Grasshopper script to translate depth map grey values into 
accurate building heights using a depth-to-height mapping obtained from the training 
data. As shown in Figure 3, users can adjust the restored building heights by setting an 
average height value. The script recalculates the height-to-grey scale mapping, 
modifying the grayscale in the building areas to maintain roof slopes and relationships 
during 3D extrusion. This ensures that luminance values do not exceed the grayscale 
maximum of 255, preserving original geometric features of roofs in the 3D urban 
landscape. 

Figure 3. Depth map render and automatically building density labelling 
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4. Experiment 

4.1. DATASET FORMAT, AUGMENTATION AND VALIDATION 
Depth Image Data Collection. The study analysed Berlin, Hamburg, and Cambridge 
(USA), each with unique street patterns—Berlin's linear, Hamburg's enclosed, and 
Cambridge's grid-like. The dataset featured diverse roof styles and used a standardized 
140-meter height mapping for depth images. Building density metrics were calculated 
for balanced distribution within each city, resulting in a dataset of 100 images per city. 

Textual Data Format. In our study, we tested eight caption formats for image-text 
pairing, with Figure 6 highlighting the top three. Format 3, such as "Baroque town 
texture, Density_16, City Plan View" for Berlin, was the most effective. It aligns with 
Dreambooth's identifier strategy, ensuring accurate density labels and reducing 
ambiguity compared to natural language formats. 

Figure 4. Textual data format strategy and experiment 

Data Augmentation. We expanded our dataset sixteen fold using rotation and flip 
transformations, creating three datasets for different cities. Each contains 1660 pairs of 
depth maps and text descriptions, totalling 4800 training pairs. Figure 7 shows these 
pairs, highlighting city-wise building density variations. 

Figure 5. Berlin, Cambridge and Hamburg partial training dataset pairs samples 

174



TEXT-TO-CITY: CONTROLLABLE 3D URBAN BLOCK 
GENERATION WITH LATENT DIFFUSION MODEL 

4.2. MODEL FINE-TUNING 
Fitting Model on Dataset. For model validation, we used 20% of our dataset as a 
validation set, focusing on learning rate and scheduler during hyperparameter 
optimization. The best setup (No. 09, Figure 6) achieved a 0.03557 reconstruction error 
and 0.040 density loss over 160 epochs on an NVIDIA 4090 GPU, using a 3e-06 
learning rate with a constant scheduler. Extensive testing over 200 epochs revealed that 
neural network loss is more affected by learning rate than schedulers. A balance 
between fast convergence and low density error was found with lower learning rates 
and a cosine scheduler. Our top models (Nos. 07, 09, 11, and 16), selected for their 
balanced performance, are adaptable to different use cases, as depicted in Figure 6-C. 

Figure 6. Models' evaluation with different learning rates and schedulers  

4.3. RESULTS 
Density Error Evaluation. Figure 7 illustrates the performance of our top model, No. 
9, using Berlin as an example. It shows higher accuracy in generating textual prompts 
within the dataset's density range and increased error values outside this range. 

Figure 7. Models' evaluation with different learning rates and schedulers  
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2D-to-3D Post-Processing. We ran batch inference generation of grayscale urban 
morphology patterns and extrude these images using our Grasshopper from section 3.4 
to reconstruct 3D urban models as shown in Figure 8. 

Figure 8. 3D Extrusion with different density text prompt and height adjustment   

Conditional Generation. Figure 9 shows our model allows the user to control 
output according to site and road conditions using ControlNet (Zhang et al. 2023), 
including specific city morphology, which is seen that the generated results fit the text 
input and can well connect to the surrounding urban morphology. 

Figure 9. Site and Road Conditional Generation  

Morphological Extrapolation. Deforum Diffusion was utilized to merge city 
morphologies by interpolating between keyframes based on different text prompts. 
This approach generated hybrids of city styles, as shown in two examples: (1) Figure 
10(a) depicts the blending of Berlin's large buildings with Cambridge's smaller ones at 
frame 120, and (2) Figure 10(b) shows the mix of Berlin's flat roofs with Hamburg's 
sloping roofs, also at frame 120. This shows that our model is capable of synthesizing 
novel urban forms. 
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Figure 10. Urban blocks and roof morphological extrapolation   

5. Conclusion and Future Work 

Our research involved refining the Stable Diffusion Model for generating depth maps 
from text prompts detailing city style and density. These maps were then used to create 
3D urban blocks, enabling the exploration of varied urban morphologies through 
conditional generation. Additionally, we developed a novel method for assessing 
building density error, applicable to various quantifiable design metrics. 

Our model offers more controlled generation compared to Pix2Pix GANs, allowing 
precise prediction of urban layouts based on user input. However, it is limited to 
prompts within the training dataset's scope and struggles with multi-indicator prompts 
(e.g., combining Floor Area Ratio and Density), which compromise model quality. 

Due to the multifarious factors impacting real-world systems, future research could 
benefit from expanding dataset scopes to encompass elements such as functionality, 
ecology, regional culture, and regulations, among others. Incorporating these 
components into text prompts could enable the tackling of more intricate urban 
planning challenges, paving the way for applications that are more aligned with real-
world needs. 
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