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Abstract. The construction process of large-scale spaces such as 
airport terminals is often carried out in several phases, so the 
environmental performance assessment and analysis of completed 
projects can provide effective reference information for new projects. 
On the other hand, the layout of large glass curtain walls and skylights 
in the check-in halls of terminals, while fully introducing natural light, 
also brings potential glare hazards, and therefore the influence of 
different design parameters on glare needs to be clarified. However, 
current research has not yet discussed in detail the prediction of glare 
performance of terminal buildings and its influencing factors. This 
study aims to develop a transfer learning strategy and a workflow for 
predicting glare performance in terminal buildings. The results have 
proved that the transfer learning strategy can help quickly predict the 
glare performance between projects with similar spatial characteristics 
with high accuracy, and the outcomes also help clarify the influencing 
factors of glare performance and provide designers or managers with 
support for performance prediction and optimization methods. 
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1. Introduction 

1.1. BACKGROUND 
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According to the 14th Five-Year Plan for the Development of Civil Aviation in China, 
the construction of civil airports in China will reach 270 by the end of 2025 (Yan S, 
2022). Green and sustainable development goals are also receiving increasing attention 
during the progress of the civil aviation industry. During the design and construction 
of a terminal building, a phased approach is often used due to the complexity of the 
process and the long period it takes. For the same airport, terminals constructed in 
different periods often have certain similarities, mainly in terms of space and functional 
composition. This makes the assessment and analysis of the completed projects of the 
previous phase a high reference for the subsequent phases and other projects of the 
same type. 

Large glass curtain walls combined with roof skylights are often used to ensure that 
natural light is fully introduced, which helps to reduce the need for artificial lighting 
and improve the indoor light environment while reducing energy consumption. 
However, the large lighting area inevitably brings a certain degree of glare hazard, and 
the glare will mainly affect passenger movement efficiency (Yi L et al., 2019). To adopt 
appropriate strategies to reduce the glare hazard at the design stage, it is important to 
investigate the annual glare-influencing factors and obtain the optimal solution. 

1.2. RELATED WORKS 

Due to the progress of computer simulation technology and artificial intelligence 
algorithms, building performance prediction has received widespread attention. In 
recent years, many researchers have realized rapid prediction of building 
environmental performance indicator values under different parameter combinations 
by establishing prediction models. For example, Aseel Hussien et al. used a random 
forest algorithm to predict the long-term energy performance of building envelopes 
(Aseel H et al., 2023), while He et al. integrated parametric design, performance 
simulation, image processing, and machine learning techniques to achieve rapid 
prediction and assessment of the wind environment of building clusters (Yi H et al., 
2021). In a previous study, we also used integrated machine learning algorithms 
combined with a multi-objective optimization process to establish a prediction model 
between façade shading and indoor light environment and energy consumption for a 
typical corridor of a terminal building and proposed a preferred solution that could be 
screened by designers (Yinyi S et al., 2023). 

However, the above studies on performance prediction and optimization are only 
available for specific buildings or certain types of datasets. Many design projects 
usually need to deal with various types of buildings and may also be constructed in 
different phases like terminal buildings, which puts a higher demand on the 
generalization and scalability of prediction models. The strategy of transfer learning 
has been proposed under such demands, which effectively adapts the training model 
by using a new building dataset and transferring the useful knowledge of the training 
model from the original dataset (Giuseppe P, 2022). For example, Fang et al. applied a 
hybrid deep transfer strategy to achieve the goal of assisting energy prediction of a 
target building with limited historical measurements (Xi F, 2021). Liu et al. applied the 
transfer learning strategy to energy systems in the field of data-driven fault detection 
and evaluation (Jiangyan L et al., 2021). 
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1.3. OBJECTIVE AND ORIGINALITY 

Based on the above background and analysis of related literature, it is evident that the 
application of transfer learning in the performance prediction of such large public 
buildings or spaces as airport terminals has not been discussed in existing studies. The 
influencing factors of glare in airport terminals have also not been systematically 
compared. To bridge the existing research gap, the objective of this study is to develop 
a transfer learning strategy and workflow for modeling the prediction of annual glare 
in the check-in halls of different airport terminals, as well as to clarify the impact of 
different design factors on the glare performance, and Terminal 1 (T1, built in 2004) 
and Terminal 2 (T2, built in 2018) of Guangzhou Baiyun International Airport are 
proposed to be selected as demonstration cases. 

2. Methodology 

2.1. OVERVIEW OF WORKFLOW 

The overall workflow of this study is shown in Figure 1. The workflow can be divided 
into three main phases. Among them, the first phase involves the establishment of 
parametric models and the acquisition of different design parameters for both T1 and 
T2, which include the roofing system (including skylight, metal roof, and ceiling), glass 
curtain wall, floor, and building orientation, etc. The second phase involves obtaining 
annual glare performance data through batch simulation and completing the machine 
learning process for T1. The third stage is to transfer the trained model from T1 to T2 
through the transfer learning strategy and then complete the adjustment and prediction. 

Figure 1. Overview of workflow 

2.2. PARAMETRIC MODELLING AND SETTINGS 

The determination of the design parameters of the terminal building check-in hall is 
based on the existing cases. After obtaining the original scheme design parameters, the 
study focuses on comparing the impact of skylights to simplify and improve the 
computational efficiency, so other geometric parameters are kept unchanged except for 
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the skylights. In addition, the building orientation and the material parameters of each 
component will also be set parameter intervals. Figure 2 shows the parameterized 
model, the interior view, and the schematic of the sectional spatial forms of the selected 
two terminals. The main difference between them is that T1 has a single-layer roof 
combined with skylights, while T2 has a double-layer roof with the addition of metal 
ceilings, and the rest of the spatial forms of the two buildings are similar. Table 1 shows 
the parameter settings of each part of the model. Meteorological parameters are 
selected from typical year data of Guangzhou city in China. 

Figure 2. Parametric modeling of check-in halls in different airport terminals 

Table 1. Summary of design parameters for terminal check-in hall. 

Classification Design parameter Range Baseline Unit 

Geometry 

Skylight width [3, 12] 3 (T2) m 

Skylight length [30, 125] (T2); [30, 60] (T1) 125 (T2) m 

Orientation [0, 360]a 15 degree 

Number of skylight columns 16 (T1); 18 (T2) 18 (T2) - 

Glass 
Skylight window transmittance [0.3, 0.6] 0.3 - 

Curtain window transmittance [0.4, 0.8] 0.5 - 

General indoor wall  Reflectivity - 0.2 - 

Roof film (T1) 
Transmittance - 0.15 - 

Reflectivity - 0.75 - 

Floor  Reflectivity [0.3, 0.6] 0.6 - 

Metal roof Reflectivity [0.4, 0.8] 0.8 - 

Metal ceiling (T2) Reflectivity [0.4, 0.8] 0.4 - 

a. Interval of orientation will be set as 90°, which means the orientation includes N (north), E (east), W (west), and 
S (south). 

2.3. PERFORMANCE SIMULATION AND DATASET 

To balance the performance simulation computation time with the availability of the 
actual scenarios, the simulation samples of the two terminals are set to 1408 and 3584 
respectively. After completing the sampling of model parameters, the calculation of 
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annual glare performance is completed by Ladybug and Honeybee performance 
calculation plug-ins of Rhina & Grasshopper, and the simulation calculation process is 
driven by algorithms. Finally, the model parameters and the performance simulation 
results are recorded in an Excel sheet. 

Considering the characteristics of the terminal building's long-period operation 
mode, the glare performance simulation analysis metrics were determined as Daylight 
Glare Probability (DGP) and GA (Annual Glare Autonomy). According to the 
International Commission on Illumination (CIE), the range of DGP values corresponds 
to different levels of glare. GA, on the other hand, represents the percentage of glare-
free time occupied by each viewpoint at each measurement point in the space, and in 
this study, if the annual average of  DGP in the viewpoints is less than 0.4, it will be 
counted as the cumulative timeshare of GA. The final performance metrics for this 
study will be defined as the minimum and average values of GA among all 
measurement points for global considerations. 

2.4. MACHINE LEARNING BASED DATA PREDICTION 

2.4.1. XGBoost integrated algorithm 

For structured data prediction, integrated machine learning algorithms based on 
decision trees have been proven to be superior by many studies, while XGBoost, as 
one of the models in this category, is executed recursively during training (Tianqi C 
and Carlos G, 2016). To further validate the advantages of XGBoost in this study, we 
also selected the T1 terminal dataset for validation to compare the performance 
difference between XGBoost and Random Forest as well as other ANN (Artificial 
Neural Network) algorithms such as MLP (Multilayer Perceptron) and SVM (Support 
Vector Machines), and the results show that the performance of XGBoost is better, and 
the specific results are detailed in Table 2. Therefore, the algorithm chosen in this study 
is the XGBoost integrated learning algorithm, which achieves the desired fitting effect 
by defining the model parameters in the regression task during training, and the main 
model parameters involved in this study include learning_rate, max_depth, 
n_estimators, etc. 

For the evaluation of the training effect, this study selects Mean Squared Error 
(MSE) and R Squared as the evaluation indexes, in which the smaller the value of MSE 
and the closer the value of R Squared is to 1, the better the training effect of the model 
is, and the formulas for the calculation of MSE and R Squared are shown as follows. 
Root Mean Squared Error (RMSE) will be selected as the evaluation index in training 
loss analysis, which is the arithmetic square root of MSE. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑚𝑚
𝑖𝑖=1   

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √𝑀𝑀𝑀𝑀𝑀𝑀 
where 𝑚𝑚 denotes the number of samples and 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�  denotes the simulated value 

minus the predicted value. 
𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑖𝑖

∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑖𝑖
  

Where the numerator part represents the sum of the squared differences between 
the true and predicted values and the denominator part represents the sum of the 
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squared differences between the true and predicted average values. 

Table 2. Comparison of the different machine learning algorithms for the GA_average of T1 

Algorithms XGBoost Random Forest MLP SVM 

MSE 0.803 2.693 0.162 3.151 

R Square 0.986 0.821 0.974 0.946 

2.4.2. Transfer learning strategy 

Transfer learning is the process of transferring knowledge from a learned related task 
to improve the new task from the similarity of data and task, and the two main concepts 
involved are domain and task. The domain is composed of feature space and 
probability distribution, and the task is composed of label space and predictive function. 
For this study, the feature space usually consists of the size of the skylight, the 
orientation of the building, the material parameter, etc., whereas the label space is the 
average and minimum values of GA. 

The source domain is the dataset defined as T1, while the dataset of T2 is defined 
as the target domain. The transfer learning we define is as follows: given the source 
domain D_source and learning task T_source, the target domain D_target, and the 
target task T_target, the transfer learning aims to improve the target prediction function 
and D_source ≠ D_target but T_source = T_target. Specific transfer learning is 
divided into the following three steps: (1) Data acquisition and preprocessing. (2) 
Training in the source domain. (3) Using a small amount of data in the target domain 
to fine-tune and modify the pre-trained model in the source domain. (4) Completion of 
predicting in the target domain.  

For the source domain, 80% of the data will be used for training and 20% for testing. 
Whereas in the target domain, only 20% of the data will be selected for fine-tuning and 
the remaining data will be used for testing. 

3. Results and Discussion 

3.1. DISTRIBUTION OF GLARE PERFORMANCE DATASET  

In Figure 3, we show a comprehensive dataset of the glare performance of the check-
in halls of the terminals obtained from the batch performance simulation. Overall, the 
distribution trends of the datasets for the two terminals are somewhat similar, i.e., the 
average values of GA are all higher while the minimum values are lower, and the 
distribution of the minimum values is more dispersed. Specifically, for the average 
value of GA, T2 generally has values higher than 75%, reaching 90% on average, with 
the highest even approaching 100%. T1, on the other hand, is mainly concentrated in 
the range of 20%-40%, with an average of only 30%, which shows that the double-
layer roof system with a ceiling is more conducive to controlling the generation of 
uncomfortable glare. For the minimum value of GA, the lower limit of both terminals 
is lower than 20%, which shows that although uniformly arranged roof skylights are 
set up, there still exists a greater risk of glare hazard in some specific spaces, which 
requires the consideration of certain control strategies.  
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Figure 3. Histogram of GA distribution 

The results of the correlation analysis for the two terminals are shown in Figure 4. 
Among them, the correlation between the glass curtain wall, floor parameter, and area 
of skylight and the glare performance is higher and shows a negative correlation, 
indicating that the glare hazard increases as the values of these parameters increase. It 
is worth noting that the correlation between the design parameters and the average 
value of GA is higher than the minimum value, which shows that the variation of the 
design parameters has a lower impact. In addition, the increase in building orientation 
angles in T1 leads to an increase in the potential hazard of glare.  

Figure 4. Correlation analysis between model parameters and glare indicators 

3.2. EVALUATION AND VALIDATION OF TRANSFER LEARNING 

Figure 5 depicts the machine learning in the source domain and the transfer learning 
training process in the target domain. During the training process, the training set and 
test loss show a monotonically decreasing trend, implying that the optimization process 
is stable and converges after 20 and 75 generations, respectively. In addition, we also 
compared the training effects of different methods or strategies to the transfer learning 
strategy, and the summary results are shown in Table 3. 

Table 3 records the values of R Squared and MSE in the source and target domains 
by the three strategies of only source, data combination, and transfer learning, and 
although the different strategies show better training effects in the source domain, the 
prediction effects of the first two strategies in the target domain are weaker. The R 
Squared in the target domain under the data combination strategy is only 0.514, while 
the R Squared in the target domain and the source domain under the transfer learning 
strategy are 0.986 and 0.921, respectively. Therefore, we believe that the transfer 
learning strategy developed in this study can effectively improve the prediction effect 
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in the target domain, and thus assist in the prediction of glare.  

Figure 5. Training loss of  source domain (T1) and target domain (T2) 

Table 3. Comparison of prediction model evaluation in source and target domains under different 
strategies 

Strategy 
Source Domain (T1) Target Domain (T2) 

R Squared Score MSE Loss R Squared Score MSE Loss 

Only source 0.986 0.803 -56.510 2356.807 

Data combination 0.955 23.05 0.514 28.577 

Transfer learning 0.986 0.803 0.921 2.758 

3.3. FEATURE IMPORTANCE ANALYSIS 

Figure 6 shows the results of the feature importance analysis conducted after 
completing the training in the target and source domains, demonstrating the extent of 
the influence of different features on glare performance. Overall, the area of a single 
skylight has the greatest impact on the glare performance of both terminals, which 
shows that the reasonable design of skylight forms and sizes is important for reducing 
the glare hazard. Secondly, the material parameters of the skylight and glass curtain 
wall are also the key features affecting the glare performance, and these features play 
an important role in the glare control of both terminals.  

Figure 6. Feature importance analysis in the source and target domain 

It is also worth noting that some parameters in the target and source domains have 
a low impact on glare performance, such as the length, width, and total area of skylights, 

502



GLARE PREDICTION IN CHECK-IN HALLS OF AIRPORT 
TERMINALS USING INTEGRATED ALGORITHMS AND 

TRANSFER LEARNING STRATEGY 

so it is recommended that the design process focuses on the form and area of individual 
skylights, as well as the material parameters of the key envelope. Besides, the 
reflectivity of the floor will also have a certain impact on the glare performance, which 
is consistent with the results of a previous study (Xingyue H et al., 2021).  

3.4. CONTRIBUTION AND APPLICATION 

The results of this study demonstrate the feasibility of a machine learning model using 
a transfer learning strategy for predicting the glare performance of different terminals, 
which will provide an important reference for the new construction and expansion of 
other airports in the future. In the practical application of other projects, designers only 
need to adjust the relevant procedures of parametric modeling, while the batch 
simulation, machine learning models and transfer learning strategies applied in this 
study can be referred to directly.  

The steps and process of this study can also be referred to when conducting 
prediction studies for other performance metrics. Meanwhile, the predictive models 
can be applied directly to the performance optimization process in the next step, which 
will reduce simulation time driven through the optimizer, and the data can be saved 
and recalled more flexibly. 

3.5. LIMITATION AND FUTURE WORKS 

This study also has some limitations. Firstly, the acquisition of design parameters failed 
to take into account the variation of the overall geometry, and only the skylight 
parameters were selected as variables. Therefore, in the subsequent study, we will 
enrich the design parameters to obtain a more complete and representative dataset. 
Secondly, in the selection of environmental performance targets, the annual glare 
indicator (GA) was selected in this study, and in terms of future works, we will consider 
other lighting indicators and combine deep learning to establish an image-based glare 
prediction study. Thirdly, the T1 and T2 in the study have similar spatial and structural 
characteristics, and if differentiated spatial types are involved, special attention needs 
to be paid to the accuracy of the results after transfer learning, and further comparisons 
can be attempted in conjunction with different transfer learning strategies.  

4. Conclusion 

This study develops and demonstrates a glare performance prediction and transfer 
learning strategy for check-in halls in terminals of different spatial types. It aims to 
obtain the glare performance impact characteristics of different spaces and provide 
methodological support for future glare performance prediction and transfer learning 
studies of similar spaces. The main conclusions of the study are summarized as follows. 

● Double-layer roofing systems with evenly spaced ceilings are more conducive to 
less glare hazards and a comfortable indoor light environment. 

● The application of transfer learning to glare performance prediction of terminal 
buildings has good practical value, and in this study, the prediction accuracy in the 
source domain (R Squared= 0.986) and the application of the XGBoost model to 
the performance prediction task in the source domain by utilizing transfer learning 
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is also able to achieve good prediction accuracy (R Squared= 0.921). 

● For the case of this study, the area of a single skylight is the most critical feature 
affecting glare performance. Secondly, skylight glass, curtain wall glass, and floor 
material parameters are also important features affecting glare performance, and the 
design process should rationalize skylight forms and sizes to control direct and floor 
reflectivity to reduce reflected glare. 
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