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Abstract. Globally, the carbon emissions of building sector 
contribute to 40% of all. Therefore, low-carbon retrofits of buildings 
become pivotal to carbon neutrality. While existing retrofit research 
focus on individual building without considering whether different 
neighborhood morphologies would affect the effectiveness of retrofit 
strategies. Here we propose a framework for optimal retrofitting in 
diverse urban neighborhoods, balancing energy savings and cost. Based 
on actual residential neighborhood morphologies, massive parametric 
sample models have been established and batch simulated before and 
after the retrofitting for its energy performance. Then, we use XGBoost 
to establish a predictive model for energy savings, and iGeneS to 
perform multi-objective optimization. SHapley Additive exPlanations  
is utilized to reveal the nonlinear contribution of four retrofitting 
strategies to building retrofit benefits (BRB). Results demonstrate that 
in different floor area ratio (FAR), the contributions of installing 
rooftop photovoltaic panels to BRB vary. In neighborhoods with FAR 
of 1.5-2.8, the contribution of installing photovoltaic panels is not as 
significant as in other FAR ranges, and its contribution to BRB is not 
comparable to replacing energy-efficient lights. Moreover, The 
effectiveness of deep lighting fixture retrofitting may be suboptimal. 
The proposed framework will offer efficient energy-saving guidance 
for future residential neighborhood retrofits. 
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1. Introduction 

Excessive energy consumption leads to an increase in greenhouse gas emissions, 
thereby exacerbating the climate crisis. Hence, a consensus has emerged among 
nations to adopt a low-carbon, and sustainable development model (Huang et al., 2022). 
Globally, the carbon emissions of building sector contribute to 40% of all carbon 
emissions (Lu et al., 2023). The urban development of China, the world's 
largest CO2 emitter, is gradually shifting towards urban renewal. Therefore, low-
carbon retrofits become pivotal in attaining carbon neutrality. While current research 
on building retrofits tends to focus primarily on individual buildings, overlooking the 
potential impact of interactions among building clusters, and face challenges in 
reconciling the trade-off between energy savings and economic costs (Ma et al., 2023). 
So, a framework proposed in this study integrates explainable artificial intelligence (AI) 
and a multi-objective optimization algorithm to achieve the optimal retrofit solution, 
balancing energy savings and costs across diverse neighborhood morphologies. 
Furthermore, the study presents the marginal benefits of different strategies.  

2. Related works 

2.1. LOW-CARBON RETROFIT OF BUILDINGS. 

Currently, existing research has explored low-carbon retrofit strategies for individual 
buildings (Gustavsson et al., 2022), such as enhancing the thermal insulation of the 
building envelope (Aruta, Giuseppe et al., 2023), installing rooftop photovoltaic panels, 
etc. However, the adaptability of various retrofit strategies varies across different 
neighborhoods. (Hong et al., 2020). For instance, high building density (BD) blocks 
can lead to shading, impacting photovoltaic efficiency. while, Low BD neighborhoods 
might increase the amount of heat entering through windows. In such cases, replacing 
glass with a lower Solar Heat Gain Coefficient (SHGC) is more effective for energy 
savings. Therefore, it is imperative to broaden the scale of the study of low-carbon 
retrofit strategies. 

2.2. SURROGATE MODELS OF ENERGY CONSUMPTION 
Obtaining building energy consumption data through simulation often consumes a 
significant amount of time. Therefore, many scholars are attempting to accelerate the 
acquisition of building model energy consumption data through alternative methods. 
(Liu et al., 2023). For instance, employing machine learning to develop urban energy 
prediction surrogate models that leverage city-specific feature metrics as input, enable 
the efficient prediction of building energy consumption (Huang et al., 2022). This 
approach significantly enhances the efficiency of energy consumption data acquisition. 

2.3. EXPLAINABLE MACHINE LEARNING 

Model explainability refers to the extent of human understanding of Machine Learning 
(ML) model predictions and decisions. Currently, the primary application of ML in the 
field of energy lies in energy consumption prediction. However, some researchers have 
combined machine learning with explainable analysis to guide design practices. For 
instance, by utilizing an ensemble algorithm that combines LightGBM with SHapley 
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Additive exPlanation (SHAP), various urban morphology indicators are explained in 
terms of their impact and contribution to urban energy consumption and carbon 
emissions (Zhang et al., 2023).  

3. Methods 

3.1. RESEARCH WORKFLOW 

A framework proposed in this study integrates explainable AI and multi-objective 
optimization to attain the optimal retrofits solution in neighborhood morphologies. The 
optimization objectives encompass the maximum energy savings while minimum 
retrofits costs.  

Firstly, this study prototypes real residential neighborhood morphology, 
constructing a batch of idealized sample models. Secondly, using Urban Weather 
Generator (UWG), Honeybee, and OpenStudio, the sample neighborhood models 
undergo two batches of performance simulations before and after retrofitting, and 
retrofitting costs are calculated. Subsequently, data on urban morphology parameters, 
retrofit strategy parameters, and energy savings are collected. XGBoost is employed to 
model the impact of urban morphology and four retrofit strategies on residential 
neighborhood energy savings, resulting in a predictive surrogate model for post-retrofit 
energy savings. Different forms of neighborhood retrofit strategies undergo multi-
objective optimization to obtain post-retrofit Pareto solutions by multi-objective 
optimization plugin, iGeneS. Finally, XGBoost is utilized to model the impact of 
Pareto solutions' four retrofit strategies on residential neighborhood energy savings and 
retrofit costs. SHAP analysis is then applied to examine the nonlinear contributions of 
urban morphology and the four retrofit strategies to residential neighborhood energy 
savings and retrofitting cost when energy savings is the same. The research workflow 
is shown in the Fig 1. 

Figure 1. Workflow 

3.2. RESEARCH OBJECT AND THE CONSTRUCTION OF A BATCH RESI-
DENTIALMODELS. 
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Based on real urban morphology, an ideal residential neighborhood measuring 240m 
x 240m is planned within the Grasshopper. Subsequently, the land is divided into a 3 x 
3 grid with 10m-wide roads. As shown in Figure 2, this study analyzes the residential 
building types in Shanghai and identifies nine typical morphologies. These include five 
categories of point-style residential clusters (P-1~P-5), two categories of slab-style 
residential clusters (S-1, S-2), and two categories of enclosure-style residential clusters 
(C-1, C-2). Next, these morphologies are simplified and randomly placed within the 
residential grid to generate a host of diverse sample models. The generated building 
heights are controlled between 3 and 25 floors, with a uniform floor height set at 3m. 

Figure 2. Samples of typical residential building types in Shanghai 

3.3. INITIAL PERFORMANCE SIMULATION OF NEIGHBORHOODS 

Using the Dragonfly and Honeybee, a large batch of sample models were transformed 
into UBEM. Based on previous research and the actual proportion of the actual 
distribution of residential functions (Liu et al., 2023), the idealized residential 
functional ratios are configured as follows: bedrooms accounting for 40%, living 
rooms for 20%, kitchens for 10%, bathrooms for 10%, and hallway spaces for 20%. 

As shown in Table 1, this study, referencing relevant standards, sets the basic 
parameters of buildings before retrofitting. Additionally, considering the presence of 
the urban heat island effect, this research employed the UWG tool in energy 
simulations to conduct microclimate simulations of sampled neighborhoods for 
corresponding EPW climate files, which were then integrated with the parameterized 
UBEM and input into OpenStudio for simulations. 
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Table 1. Basic parameters of the buildings Before Retrofitting 

3.4. LOW-CARBON RETROFIT AND RE-SIMULATION  

This study applied four retrofitting strategies including utilizing energy-efficient 
lighting fixtures, low-energy equipment, low Solar Heat Gain Coefficient (SHGC) 
glass, and installing solar photovoltaic panels on the roof. Considering the actual 
situation, this study defined the post-retrofit parameter changes as follows: a reduction 
range for residential building lighting power density from 0 to 3.55 W/m², a reduction 
range for equipment power density from 0 to 1.5 W/m², a reduction range for glass 
SHGC from 0 to 0.7, and a power variation range for solar photovoltaic panels from 
0.275 to 0.6 kW. Additionally, the study further categorized these retrofitting strategies 
into shallow, moderate, and deep retrofitting, with specific parameter range variation 
outlined in table 2. 

Table 2. Range of retrofit parameter variations 

Based on market research, this study obtained retrofit costs (RC) calculation 
equations for different strategies through regression fitting (Equations 1-4). Following 
the completion of retrofitting, a second batch of performance simulations was 
conducted on the sampled models. 

In the equations, 𝑥 represents the post-retrofit lighting power density, 𝑥 denotes 
the post-retrofit equipment power density, 𝑥 represents the post-retrofit SHGC value 
of glass, and 𝑥  represents the post-retrofit power of the photovoltaic panels. 
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Additionally, 𝑦 signifies the cost of replacing energy-efficient lighting fixtures, 𝑦  
represents the cost of replacing low-energy equipment, 𝑦  is the cost of replacing low-
SHGC glass, and 𝑦  denotes the cost of adding photovoltaic panels. 

3.5. CONSTRUCTING AN ENERGY PREDICTION SURROGATE MODEL 

The TT toolbox plugin was employed to collect simulation datas, including 
morphological parameters such as Floor Area Ratio (FAR), Building Density (BD), as 
well as strategy-related variations like the differences in lighting and equipment power 
density. Additionally, data on retrofit costs of per square meter(RCM), changes in 
Energy Use Intensity before and after retrofitting(EUI_D), and Building Retrofitting 
Benefits (BRB) were collected. The calculation of BRB is as shown in equation 5.  

Subsequently, XGBoost was applied to model the nonlinear relationships between 
neighborhood morphology, low-carbon retrofit strategy variables, and EUI_D. The 
models were evaluated using the coefficient of determination (R2), resulting in 
surrogate models that map key design parameters to post-retrofit energy savings. 

3.6. MULTI-OBJECTIVE OPTIMIZATION AND SHAP ANALYSIS 

In this study, the iGeneS was employed in collaboration with surrogate models to 
achieve multi-objective optimization. IGeneS is a Grasshopper plugin capable of 
parallel computation, known for its fast execution speed and high convergence. The 
optimization parameters in this study included a population size of 100 and 100 
generations for the number of iterations. The optimization objectives were set as 
maximizing EUI_D and minimizing RCM. The adjustable parameters are input 
parameters for the four retrofit strategies, including the decrease in lighting and 
equipment power density, glass SHGC reduction, and solar photovoltaic panel power 
increment. 

Upon completion of multi-objective optimization, the Pareto solution sets data was 
output. Subsequently, XGBoost was applied to model the nonlinear relationships 
between neighborhood morphology, low-carbon retrofit strategies, and EUI_D and 
BRB. Following this, the SHAP was utilized to quantify the contributions of different 
low-carbon retrofit strategies to EUI_D and BRB. 

4. Results 

This study conducted low-carbon retrofitting and multi-objective optimization on 500 
distinct urban morphologies, resulting in a total of 39,700 samples of Pareto solution 
data. 

4.1. THE CORRELATION BETWEEN MORPHOLOGY AND EUI_D AND 
BRB 
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As shown in Figure 3, through Pearson correlation analysis, this study reveals the 
correlation between residential area morphology indicators and EUI_D and BRB. 
Specifically, BD, SD, OSR exhibit positive correlations with EUI_D and BRB, while 
FAR, AF exhibit negative correlations with EUI_D and BRB.  

Figure 3. Correlation between morphological indicators and EUI_D and BRB 

4.2. RETROFIT INTENSITY OF DIFFERENT NEIGBORHOODS 

Due to the influence of morphology on EUI_D and BRB, and the presence of 
collinearity among some indicators, this study selects the commonly used FAR and 
BD to perform the following gradient division. Low FAR is defined as 0.7 to 1.5, 
medium FAR as 1.5 to 2.8, and high FAR as 2.8 to 4. The range for low BD is 0.15-
0.22, medium BD is 0.22-0.3, and high BD is 0.3-0.4. Then, we further analyze the 
intensity of low-carbon retrofitting strategy selection under different morphologies. 

4.2.1. Low-carbon Retrofitting Intensity under Different FAR 

As illustrated by the distribution of Pareto solutions in Figure 4, this study observed 
minimal variations in the retrofitting intensity of glass, equipment, and lighting fixtures 
across different FAR for the four retrofitting strategies. Specifically, the retrofitting 
intensity for glass and equipment remained at a shallow level, while the lighting 
fixtures exhibited both shallow and moderate retrofitting intensities. The strategy 
involving the addition of solar panels showed variability in different FAR residential 
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areas; in low FAR neighborhood, a moderate retrofitting level is most suitable, while 
in medium to high FAR neighborhood, deep retrofitting could be considered. 

Figure 4. Distribution of retrofitting strategy intensity under different FAR 

4.2.2. Low-carbon Retrofitting Intensity under Different BD 

As shown in Figure 5, in different BD residential neighborhoods, there are variations 
in the adaptability of the four retrofitting strategies. Based on the analysis of the Pareto 
solution sets, this study found the retrofitting intensity for glass and equipment 
remained at a shallow level, while the retrofitting intensity for photovoltaic panels 
ranged from moderate to deep retrofitting. The retrofitting of lighting fixtures showed 
differences across different BD residential neighborhoods, with shallow and moderate 
retrofitting being suitable for medium to low BD neighborhoods, and medium to deep 
retrofitting being predominant in medium to high BD neighborhoods. 

Figure 5. Distribution of retrofitting strategy intensity under different BD 

4.3. DISPARITIES IN ENERGY-SAVING CONTRIBUTIONS OF DIFFER-
ENT RETROFITTING STRATEGIES 
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4.3.1. Disparities in retrofitting strategy contributions in different FAR residen-
tial neighborhoods 

Considering the optimal compromise between the two objectives in this study, various 
low-carbon retrofitting strategies demonstrate differences in their contributions to 
EUI_D across different FAR. As depicted in Figure 6, the strategy with the greatest 
EUI_D contribution in low FAR and high FAR residential neighborhoods is installing 
photovoltaic panels. However, in medium FAR residential neighborhoods, retrofitting 
lighting fixtures stands out as the most prominent contributor to EUI_D. 

Figure 6. Retrofitting strategy contributions in different FAR  

4.3.2. Disparities in retrofitting strategy contributions in different BD residen-
tial neighborhoods 

Similarly, considering both retrofitting costs and energy savings, various retrofitting 
strategies exhibit differences in their contributions to energy savings across different 
BD. As illustrated in figure 7, in low BD residential neighborhoods, the strategy with 
the greatest energy-saving contribution is the replacement of energy-efficient lighting 
fixtures. However, in medium BD and high BD residential neighborhoods, the most 
prominent contribution installing photovoltaic panels. 

Figure 7. Retrofitting strategy contributions in different BD 

5. Conclusion 

This study aims to explore the adaptability and energy-saving contribution differences 
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of four strategies in residential neighborhoods. The results indicate that two retrofitting 
strategies, replacing low SHGC glass and upgrading to high-efficiency equipment, are 
prioritized for shallow retrofitting, while strategies involving the replacement of 
energy-efficient lighting fixtures and installing rooftop photovoltaic panels may be 
considered for moderate retrofitting. Additionally, installing the rooftop photovoltaic 
panels can be implemented for deep retrofitting in medium to high FAR residential 
neighborhoods. From an energy-saving contribution perspective, among the four 
energy-saving strategies in this study, prioritizing installing rooftop photovoltaic panels 
and the replacement of energy-efficient glass is most advantageous for enhancing the 
carbon reduction benefits. 

The conclusions drawn in this study offer guidance for the retrofitting of 
neighborhoods, aimed at further enhancing the potential for low-carbon retrofitting. 
However, this study has certain limitations, such as drawing conclusions solely from 
simulations and without considering the causal effects between urban morphology, 
strategies, and energy savings. Therefore, future research will validate the findings 
using actual energy consumption data and incorporate causal inference into the 
research process to explore the comprehensive potential of various retrofitting 
strategies, promoting sustainable urban development. 
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