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Abstract. This paper showcases the development of Arch-Form, a 
platform that enables the investigation of underutilization of knowledge 
from architectural competitions, specifically within the Swiss 
architecture system. The aim is to leverage machine learning to analyse 
and understand architectural forms from school competition data 
spanning the past 20 years. The original contribution of this study lies 
in transforming competition results into a machine-learnable format, 
using 622 massing models to create 'architectural' point clouds. This 
methodology involves using 3D Adversarial Autoencoders (3dAAE) to 
encode and reconstruct these point clouds, experimenting with various 
structured formats such as uniform, horizontal and vertical g-codes. The 
main conclusion drawn is that machine learning can significantly aid in 
understanding and predicting architectural form preferences, 
documenting trends, and transformations in design. This approach 
enhances the computability of architectural forms. It offers a new 
perspective on how machines interpret and generate architectural data, 
contributing to a more comprehensive understanding of architectural 
evolution and societal preferences in design. 
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1. Introduction 
The architectural competition has long been a platform for experimentation and 
shaping appropriateness within various architectural cultures. As machine learning 
(ML) has been introduced to the field of architecture, remarkable results have 
demonstrated the ability of machines to learn and recognize patterns of data and 
generate new data. With this new capacity, the research will utilize the results of the 
well-organized Swiss architecture competition system as a dataset based on digital 
information from the past 20 years. As a means to investigate form, results from these 
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competitions offer abundant data to analyse the evolution of forms and identify which 
forms are 'desired' by society. This paper investigates the research question: How can 
machines not only understand the intricacies of architectural forms but also transcend 
this understanding to judge the quality of the form? 

In advancing previous research, this research further enhances the dataset format 
for improving the analytical reading and generative aspects (Kim & Huang, 2022). It 
also provides a visual interface to better understand machine reading of architectural 
form. The research utilizes 622 massing models from the results of the Swiss 
architecture competition, transforming them into 'architectural' point clouds for 
analysis with a 3D Adversarial Autoencoder (3dAAE) (Zamorski et al., 2019), which 
is a further developed version of autoencoder with a compact and efficient 
representation of point cloud models used in generation novel chair designs (Bidgoli 
& Veloso, 2018). The research aligns with a study on the collective analysis of forms 
in a particular city using deep learning, focusing on clustering based on morphological 
features. It investigates the relationship of building orientation on urban form identity, 
comparing datasets with orientation-embedded and orientation-normalized building 
forms to understand how direction reflects urban locality (Rhee & Krishnamurti, 2023). 

The success of the training is evaluated through a comparative analysis between the 
input point clouds and the reconstructed point clouds. The multi-dimensional clustering 
strategies are developed to identify correlations across different formal groups. As part 
of speculative experiments, the interface visualizes the interpolation of 3D models to 
generate new architectural forms. The current research creates a machine-learned 
archive of architectural possibilities comprising a 3D dataset that indexes formal 
properties to the geometrical information of respective competitions and documents 
metadata such as architects, jury members, time factors, and rankings of the projects. 

The research explores how architects can better comprehend and navigate the 
accumulated knowledge from architectural competitions that embody the 
methodological, representational, and communicative languages between humans and 
machines through machines' understanding of architectural forms. 

2. Machine Judging 

2.1. RETHINKING ARCHITECTURAL ARCHIVING 
There have been many attempts to create digital archives of competition materials 
methodologically. These efforts involve deciduous data selection, classification 
methods, categorization, labelling, and presentation in a digital manner (Strebel & 
Silberberger, 2017). Some web-based digital archives have been developed into 
multiple readings of visualizing competition data, such as 3D photography of the 
models in the Canadian Competition Catalogue (CRC-ACME). The platform shows 
different readings of archives of the competition information and its winning entries, a 
map of competitions, and a compilation of model photos with the search system. Other 
platforms, such as the Seoul competition platform (Seoul Metropolitan Gov), German 
web platform competitions (Wettbewerbe Aktuell), and Konkurado (Web of Design 
Competitions) go beyond archiving and act as a platform for running the competition 
for tender processes. Another example is the interactive map as a platform to present 
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the data of competitions (Association Le Concours Suisse) with search functions.  
Archiving and its connected acts of description and organization express a point of 

view or narrative that can be an excellent lesson for designers and architects (Lam, 
2021). The ML algorithms offered alternative views to organize and develop different 
narratives from the existing corpus of data. For example, the work (Klingemann & 
Doury, 2018) showcased how computer vision algorithms can be used to find the 
hidden relationships between thousands of artworks through visual connection. 
Digitalization offers archive new meaning through the decontextualization and 
removal of institutional authority (Birkin, 2020). ML also enables the distance reading 
of architectural information, as Witt (2022) demonstrated, offering new ways of 
comprehending what already exists and imagining the void in between. 

The emergence of ML models has opened up new ways of interpreting architectural 
works, advancing research in areas like the analysis of architectural competitions in the 
context of school buildings. This involves acquiring formal knowledge of architecture 
to enable machine reading of form-correlated datasets, thus expanding our 
understanding of architectural competition winners. Unlike other building typologies, 
such as urban housing blocks, school competitions focus on understanding buildings 
as singular entities. To support this research, we have developed Arch-Form, an 
interactive interface designed to visualize competition data through a formal 
understanding of architectural form in multi-dimensional matter through ML. 

2.2. ARCHITECTURAL POINT CLOUDS 
Building on the previous work on the concept of 'architectural point cloud,' the current 
research provides several ways to invest in the relation and distribution of different 
models and the effect of point cloud type in the latent space. With a limited dataset, we 
wanted to experiment with the typical uniform point cloud, which is the most suitable 
one for learning architectural forms (Fig. 1). The different types of 'architectural' point 
clouds for include uniform point clouds, horizontal g-code-inspired point clouds, and 
vertical g-code point clouds. In this experimental process, two strategies are employed 
to scale the point clouds: constant vs. normalized scaled to 1×1×1 unit bounding box. 
Also, the orientation of models is considered: the aligned vs. original orientation. 

Figure 1. Different types of point clouds are a) uniform, b) horizontal, c) horizontally rotated, d) 
horizontally scaled, and e) vertically distributed point clouds. 

To ensure that different types of architectural point clouds are comparable and 
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meaningful for analysis, we trained the model in a way that encodes all types of point 
clouds into the same latent space. The training process is divided into two stages. In the 
first stage, the model takes only the uniform point cloud as input and tries to reconstruct 
the uniform point cloud as well. In the second stage, we fine-tune the model by 
randomly feeding different types of point clouds, but the output remains the 
corresponding uniform point cloud. With such a process, the model can encode 
different types of point clouds into the same latent space. 

2.3. MAPPING THE LATENT SPACE 

2.3.1. t-SNE vs UMAP 
The interface provides options to view the latent representation in both 2D and 3D with 
t-SNE and UMAP. Both algorithms take the high dimensional latent code as input and 
reduce the dimension to either 2D or 3D, making it possible for humans to understand 
the distribution more easily. T-SNE is one of the most widely used dimension reduction 
methods. However, it is unable to preserve the feature in the global structure. UMAP, 
in contrast, can better keep the global structure, making the low-dimension 
visualization more intuitive and meaningful. 

2.3.2. Metadata (rank, competition, jury, etc.) 
Exploring the distribution of different models with the same metadata is one way to 
investigate the relation between form and its result in the competition (Fig. 2). The 
interface provides two ways for visualizing the cluster metadata — by colour and line. 
Although it might be easier to view the distribution of a continuous property, e.g., 
similarity, with a gradient colour distribution, colour is not easily distinguishable for 
discrete data, such as rank or competition (Fig. 3b&c). 

Figure 2. Image of the interface showing the metadata (left), search function (top), and machine 
learning analysis visualization (right), with cluster relations between different competitions with 

machine reading of forms in 3D (middle). 
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Therefore, the interface provides line-based clustering visualization, which links all the 
models that share the same property or lie in the same analysis group. For example, we 
can connect all models within the same competition. With such links, we can quickly 
tell if there are outliers, in terms of form, in one competition. We can further analyse 
its performance and build constructive design strategies in future competitions. 

2.4. MULTI-DIMENSIONAL CLUSTERIZATION 

2.4.1. K-means 
The initial idea is to show the clustering of the architectural form (Fig. 3d). However, 
there needs to be a meaningful way to elaborate the clustering as we still need labelled 
semantic information. This feature will provide an easily integrated socket for 
visualizing future training results.  

Figure 3. Image of the interface showing: a) 3D UMAP of forms coloured by similarity with selected 
competition model and similar models in form, b) coloured by ranking, c) coloured by competitions, 

and d) coloured by formal cluster. 
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2.4.2. Similarity 
To answer the question, "Which form is similar to another?" from the ML model's 
view, the most intuitive way is to visualize the similarity across different models' latent 
codes. Although the result of t-SNE or UMAP provides some clue of similarity, the 
information is distorted with the loss of high-dimensional data. Thus, there should be 
another way to showcase the similarity directly with the high-dimensional latent code. 
The interface visualizes the similarity in two ways: bar chart and colour (Fig. 3a). First, 
the user should choose the "target model" to explore, and the system will draw all the 
other models based on their similarity -- the most similar model would be blue, the 
most unlikely one would be red, and the rest would be the linear interpolation of blue 
and red based on the similarity. The bar chart quantifies the similarity, which makes it 
easier to tell how different these models are. To explore the variation of the latent 
representation across different point cloud types, when switching the point cloud type 
on the interface, which translates the model to the corresponding position assigned by 
the new dimensional reduction method, the color representing the similarity preserved 
as well as the order of the models in the bar chart. In this way, humans can visually see 
the ML model's perspective transformations toward different types of point clouds. 

2.4.3. K-Nearest Neighbor (KNN) 
Besides the global view of similarity, another way to explore locally is through the k-
nearest neighbour, where the system finds 𝑘 models with the most similar forms from 
the target and uniformly paints them with a randomly assigned color (Fig. 3a green 
highlight). Likewise, when the point cloud type changes, the colour does not change. 
Furthermore, if KNN is queried again, the system finds its k-nearest neighbours with 
the new point cloud type. Instead of erasing the previous colour and replacing it with 
the new one, the colour is painted additively. We can tell if the nearest neighbours 
change across different point cloud types and if one model is the target's neighbour 
regardless of the change of point cloud types. 

2.5. FORMAL INTERPOLATION-GENERATION 

2.5.1. Interpolation 
The equation governs the linear interpolation ∑ (	𝐿! 	× 	𝑊!)	/	∑ 	𝑊! 	, where 𝐿! 
is the latent code of model 𝑖, and  𝑊! is the weight of model 𝑖, which is a user-defined 
parameter. The system linearly interpolates the form with the user-defined weight to 
generate forms of, for example, 10% of Model A, 20% of Model B, and 70% of Model 
C by assigning the weight respectively (Fig. 4). The user can select two or more entries 
and set the weight of each model. The corresponding interpolation would be generated 
based on the linear interpolation on the latent space. Latent space interpolation can 
create new architectural forms embodying different winning entries' qualities. 

We adopted multiple methods to reconstruct the mesh from the point cloud to 
visualize the interpolated result better (Fig. 5). PolyFit (Nan & Wonka, 2017) can 
generate a watertight mesh with sharp edges and flat walls, which might be a suitable 
algorithm for reconstructing an architectural 3D model. However, since it's based on 
point cloud segmentation and plane estimation, it requires a clean and dense point cloud. 
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The interpolated point cloud generated by 3d-AAE contains many noisy outliers. Also, 
it does not have enough points in the smaller segment to support the plane estimation, 
making PolyFit fail to produce satisfactory results. 

Figure 5: UI for form interpolations. 

On the other hand, with Rhino's function Proximity3D or ShrinkWarp, models with 
more meaningful forms can be reproduced. Proximity3D aggregates points and 
connects them with lines, which can then be turned into meshes. However, it does not 
guarantee the result to be a solid volume and often produces degraded results when the 
input contains noise. ShrinkWrap creates a 3D alpha shape over the point cloud 
(Portaneri et al., 2022), which guarantees that the result is a watertight solid volume. 
The result can be further processed with QuadRemesh to eliminate the defects. 

Figure 5: (a) interpolated point cloud, result formed by (b) Proximity3D, (c) result formed by 
ShrinkWrap, (d) ShrinkWrap + QuadRemesh, and (e) ShrinkWrap + QuadRemesh, turn into SubD. 
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3. Results and Discussions 

3.1. FROM HIERARCHICAL TO RELATIONAL ARCHIVE 
Arch-Form employed dimensionality reduction strategies such as t-SNE and UMAP 
to extract meaningful low-dimensional structures from the high-dimensional latent 
space combined with visualization techniques showing clustering and similarities, 
facilitating an understanding of the relational characteristics between different forms. 
The ability to map the latent representation of the architectural form in conjunction 
with traditional architectural metadata can provide insightful interpretations. For 
example, Figure 6 shows how the shortlisted entries from the same competition are 
relatively close to each other, presumably because the formal results of the building 
mechanically respond to the context, brief, and programs. However, on some occasions, 
one or two entries are away from the rest of the entries from the same competition, 
denoting the distinct formal proposition, which can indicate innovation or the 'out of 
the box' thinking of the architect. These entries are some of the most provocative, 
making them different. The ability of machines to identify and emphasize such outliers 
emphasizes their potential as valuable tools for uncovering unconventional 
perspectives that may otherwise go unnoticed. 

Figure 6.  Distinctive formal proposition that sits apart from the other entries in a single competition. 
The entry's rank is denoted by darkness, where darker colours represent the highest ranking. 

The developed platform showcases the capacity of ML algorithms to uncover 
connections between winning forms, transcending traditional categorizations, and 
revealing novel perspectives. This can encourage architects and designers to embrace 
creative thinking and consider alternative formal propositions. The developed platform 
enables the investigations of these different formal relationships determined by data, 
sampling strategies, and ML algorithms. Together with conventional architectural 
metadata, the platform allows for the creation of new relationships from a formal point 
of view that not only aids in interpreting architectural data but also becomes a catalyst 
for pushing the creation of new formal architectural vocabularies.  

3.2. NAVIGATING ARCHITECTURAL POSSIBILITIES  
The machine's latent space enables architecture mapping into a high-dimensional world, 
breaking the discrete, pre-existing architectural categorization into a single continuous 
domain (Chaillou, 2022). In contrast to low-dimensional spaces that we experience, so 
much empty space is created between data points mapped in high-dimensional spaces 
(Rohlf, 2021). However, our intuition about high-dimensional space is unreliable, and 
common concepts such as distance and density of data points have little meaning to the 
reading. Interpolation is one possible method of exploring the voids between data 
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points in the high-dimensional latent space that have been commonly employed in 
generative ML applications for architectural design (Huang et al., 2021; Mayrhofer-
Hufnagl & Ennemoser, 2023). 

Therefore, the interpolation function in Arch-form suggests the importance of voids 
between data points in high-dimensional latent as a medium for navigating 
architectural possibilities between the winning forms (Fig 7). In conjunction with 
conventional architectural metadata, latent space interpolation can generate alternative 
formal propositions given a set of parameters. The challenge is to enable meaningful 
interpolations that are relevant to architectural context. Much research has been done 
to investigate the latent space structure of generative models in the visual domain 
(Asperti & Tonelli, 2022; Liu et al., 2019). This platform is a testing bed for different 
deep generative models and interpolation techniques in the 3D data domain, 
particularly for architectural forms.  

Figure 7: Interpolation of two competition entries. 

4. Conclusion and Future Work 
This research liberates the use of architectural archives beyond their conventional users, 
i.e., architectural historians, to the broader audience of practicing architects. By 
leveraging the ML point cloud to analyze an archive of Swiss school competition data 
spanning the past 20 years, we seek techniques and methods to reveal the underutilized 
knowledge valuable for leveraging our understanding of architectural forms. We 
developed Arch-Form as a platform to enable holistic reading of multiple competition 
entries compared to conventional individual views of a single competition, allowing 
the learning of the evolution of form and providing insight into architectural forms that 
manifest into the cultural zeitgeist and innovations. The developed platform aims to 
provide a testing bed to map and read the competition differently by coupling 
traditional architectural competition metadata with ML of architectural forms and 
visualization techniques. Architectural form is a token of broader architectural data, 
providing contextual and relational evidence to study the vast repertoire of winning 
architectural forms. The tools also provide means to generate architectural forms from 
the learned formal vocabularies through interpolations. 

The developed platform suggests several promising future directions of research. 
In terms of data, the advancement of 3D ML has extended beyond point cloud 
representation. Finding suitable and robust representations for 3D architectural formats 
for different scales will advance the proposed platform on a broader scope. The current 
ML models only learn the point cloud data. The use of multi-modal ML, incorporating 
metadata like environmental performance, material usage, and urban context, along 
with LLMs, can leverage the textual information of the competition. This approach 
provides a more comprehensive understanding of architecture. Furthermore, advanced 
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3D reconstruction methods from the point cloud can be implemented, involving normal 
computation and Poisson surface reconstruction for generating new precise forms. 

Providing a comprehensive view of architectural forms embodying competition 
metadata, the interface should allow architects to freely curate, cluster, categorize, and 
compare different formal qualities of architecture for the design process. Still, humans 
must carefully compare various ML experiments on visualizations of mapping of 
formal affinities; there needs to be a way to mathematically and empirically compare 
the 'strong' forms. The latent space interpolation could also go beyond typical linear 
interpolation. Research in the visual domain has shown different ways of creating 
meaningful latent space interpolation given various generative models. The future aim 
is to extrapolate the research into the 3D architectural domain to enable meaningful 
exploration of architectural forms. 
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