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Abstract. Multimodal models that combine different media like text, 
image, audio, and graph have revolutionised the architectural design 
process, which could provide automated solutions to assist the 
architects during the early design stages. Recent studies use Graph 
Neural Networks (GNNs) to learn topological information and 
Convolution Neural Networks (CNNs) to learn spatial information from 
floorplans. This paper proposes a deep learning multimodal model 
incorporating GNNs and the Stable Diffusion model to learn the 
floorplan's topological and spatial information. The authors trained a 
Stable Diffusion model on samples from the RPLAN dataset. They used 
graph embedding for conditional generation and experimented with 
three approaches to whole-graph embedding techniques. The proposed 
Stable Diffusion model maps the user input, a graph representing the 
room types and their relationships, to the output, the predicted 
floorplans, as a raster image. The Graph2Vec and contrastive learning 
methods generate superior representational capabilities and yield good 
and comparable results in both computationally derived scores and 
evaluations conducted by human assessors, compared to the Graph 
Encoder-CNN Decoder. 
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1. Introduction 

In recent years, advancements in artificial intelligence (AI) have brought renewed 
attention to the role of Computer-Aided Architectural Design (CAAD). The use of AI 
in architectural design has proliferated from the early days of CAAD to the current 
visions of man-machine symbiosis. This growth relies on computer hardware and 
software advances and requires a shift in architects' design thinking paradigms. It 
necessitates collaboration among professionals from multiple domains, including 
architects, computer scientists, data scientists, and machine learning engineers. This 
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paper proposes a deep-learning multimodal model incorporating GNNs and diffusion 
models to learn topological and spatial information from architectural floorplans. The 
aim is to develop a system that generates high-quality architectural floorplans to assist 
architects during the early design stages. 

The significance of this paper lies in several key aspects. Firstly, the authors employ 
the whole graph embedding technique to capture and represent a floorplan's intricate 
structure and topology. This approach enables a comprehensive understanding of the 
floorplan spatial relationships and design elements. Secondly, the proposed use of the 
diffusion model for floorplan generation demonstrates its superior performance 
compared to Generative Adversarial Networks (GANs) regarding image generation 
quality. Lastly, this study encompasses multiple approaches to obtain whole-graph 
embeddings as an agnostic task. These embeddings have broader implications beyond 
floorplan generation, as they can be utilised in various downstream tasks such as graph 
classification and conditional generation. This versatility enhances our research's 
applicability and potential impact in diverse architectural and computational design 
domains. 

2. AI and Floorplan Generation  

The recent growth in the use of Artificial Neural Networks (ANNs) in computational 
design reflects the fast advancement in research in generative models (Dhondse A et 
al., 2020), the increase in computational power, and the availability of training datasets 
(Hodas & Stinis, 2018) such as RPLAN, CubiCasa5K, and CubiGraph5K. Moreover, 
using many computational algorithms and variants of neural networks based on graphs, 
such as Graph Convolutional Networks (GCN) (Carta, 2021), has led to considerable 
advancements in graph processing and generation. In general, algorithms based on 
graph theory result in quite an effective manipulation of data in spatial configurations. 
Designers and those trained in spatial abstraction usually find topological approaches 
intuitive, for they have data structures like bubble diagrams and direct applications to 
spatial organization. Wassim Jabi's work innovatively employs topological graphs 
using the Topologic plugin, presenting a notable advancement for building 
classification tasks (Alymani et al., 2023). 

The literature may be divided into three categories of floorplan conditional 
generative methods based on the input type: pixel-based, language-based, and graph-
based approaches. Moreover, generative deep learning models typically comprise two 
main components: the encoder and the decoder. Combining different modalities within 
the encoder and decoder exposes different generative models utilising different media 
types, each with advantages and disadvantages for floorplan generation tasks. Some 
approaches may employ a pre-processing step to convert the input from one type to 
another before feeding it into the model or even post-processing the output. 

First, following a pixel-based approach, some researchers developed their model 
using the Pix2Pix model, which is a version of Generative Adversarial Networks 
(GANs) that takes an image representing the floorplan footprint as input and a floorplan 
raster image as output (Figure 1). The model consists of convolutional parts in both the 
encoder and decoder. This approach's advantage is utilising convolutional layers in the 
model decoder. CNNs are critical in preserving and leveraging spatial information 
during the model's training and prediction phases. They extract spatial information 
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from an image by performing localised computations using convolution kernels, which 
generate floorplans that look like real images and make much sense from an 
architectural perspective. The limitation of this approach is that the user has no control 
over the floorplan program as it is solely conditioned on the floorplan footprint and the 
door location. Recently, Veloso et al. tried to address this limitation by converting the 
input graph with the room areas to a bubble diagram image, then dealing with the input 
bubble diagram image and output floorplan image as Pix2Pix (Veloso et al., 2022). 
However, while the input in the graph format has the floorplan topological information, 
the conversion of the graph into a pixelated image does not retain this information 
explicitly as in the graph format. As a result, the model may easily generate unrealistic 
designs (Figure 1).  

Figure 1. Left: Success example of using Pix2Pix in architectural floorplans (source: Chaillou, 
2020). Right: Examples of overlapping discs after converting the graph and zones to an image 

(source: Veloso et al., 2022). 

Second, in the graph-based approach, the user's input is a graph containing the room 
types and their edge relationships, fed to GNNs in the encoder part (Nauata et al., 2020, 
2021). The generated output of this approach is a series of bounding boxes representing 
each room, which are later combined to generate the final floorplan during the post-
processing phase. The advantage of this model is rooted in the GNN's ability to learn 
the underlying topology of the input graph. This model leverages the graph structure 
as a source of non-spatial information that captures the connectivity patterns between 
the nodes (rooms). However, this model's limitation lies in its decoder component, 
which treats the output as a regression task by predicting the bounding boxes of each 
room separately. Consequently, there is a risk of some rooms overlapping, resulting in 
generated floorplans that do not make architectural sense regarding rooms' dimensions 
and spatial qualities, as shown in the failure cases in Figure 2. 

Figure 2. Left: Overlapping bounding boxes of rooms in House GAN. 
Right: Failure and success examples of the generation (source: Nauata et al., 2020). 
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Third, in the language-based approach, the language model encoder learns the 
mapping between the textual input and the corresponding floorplan generated by the 
decoder. The decoder may also predict bounding boxes (Galanos et al., 2023) (Figure 
3) or generate images from the text as done in generative models such as Stable 
Diffusion, GAN text, Dall-2, and Mid-Journey. Nevertheless, the models that generate 
the room output as bounding boxes may lack spatial information. 

Figure 3. Architex user interface and its raw prediction (source: Ramesh et al., 2022). 

To this end, this paper proposes a deep-learning multimodal model that combines 
the strengths of GNN and CNN in Stable Diffusion to generate a high-quality raster 
image of the floorplan. Specifically, it employs GNN in the encoder component to 
capture the graph input's topological non-spatial information and the decoder's 
convolutional layers to preserve the spatial characteristics of the generated floorplan. 
In other words, the paper replaces the text encoder part in the original Stable Diffusion 
model with a graph encoder pre-trained as whole-graph embedding.  

We have approached the graph encoder as an architectural language model by 
training it as an agnostic task to learn the whole-graph embedding, which holds the 
floorplan semantics. The learned embeddings can then be utilised in downstream tasks 
such as graph classification or floorplan generation. 

3. Methods  

The paper uses a three-stage method: data preparation, generative model, and finally, 
post-processing. 

3.1. DATASET PREPARATION AND PRE-PROCESSING 

 The RPLAN dataset (Wu et al., 2019) is a collection of real-world residential buildings 
containing over 80k floorplans with 13 room types (Hu et al., 2020). We split 1000 
floorplans from the RPLAN dataset into 800 and 200 samples for the train and test sets, 
respectively. We adopted the same colouring labels and room mappings from the pre-
processing stage (Rodrigues et al., 2021), as the colours have high contrast, which helps 
in the room's segmentation. We mapped the dataset room types to only six: public area, 
room, storage, kitchen, bathroom, and balcony. In the pre-processing step, we extracted 
the graph and its corresponding floorplan image from the raw multichannel floorplan 
file provided in the dataset. Figure 4 shows an example of the extracted geomatic 
information from the structured floorplan, which is stored in a serializable format to 
generate a graph that describes the room relation in a floorplan. 

132



FROM TOPOLOGY TO SPATIAL INFORMATION:  

A COMPUTATIONAL APPROACH FOR GENERATING 

RESIDENTIAL FLOORPLANS 

Figure 4. The pre-processing stage: extracting the graph and the floorplan image-RPLAN Dataset. 

3.2. MODEL TRAINING 

First, we trained the graph encoder as an agnostic task to get the whole-graph 
embeddings. Then, we used these embeddings in the downstream task of floorplan 
generation. The whole-graph embeddings represent graph structures in a lower-
dimensional space (Figure 5). The aim is to encode the graphs (reduced bubble 
diagram) such that the similarity in the embedding space approximates the similarity 
in the original network. After separately training the graph encoder, we replaced the 
text encoder in the original Stable Diffusion model with the pre-trained graph encoder. 
Finally, we tested three implementations for the graph encoder in conjunction with the 
Stable Diffusion model, where we trained the diffusion model from scratch with each 
graph encoder. We discuss the graph encoders in the following sections. 

Figure 5. Representation learning on networks: whole graph embedding. 

The first graph encoding method is Graph2vec (Narayanan et al., 2017) for whole-
graph embedding. This method has received attention recently due to its ability to 
capture graph structure information and generate embeddings usable in various 
downstream tasks. The method uses a skip-gram model to learn vector representations 
of subgraphs from a given graph. These vector representations are combined to 
generate an embedding for the entire graph (Figure 5). We used the off-the-shelf 
Graph2vec algorithm implemented in Karate Club (Rozemberczki et al., 2020). 

The second approach is borrowed from the Contrastive Language-Image Pre-
training (CLIP) model (Radford et al., 2021). One of the key features of CLIP is its use 
of contrastive learning, a technique that allows the model to learn by contrasting similar 
and dissimilar pairs of data, text, and images. Using a contrastive loss function, CLIP 
utilises a transformer-based model pre-trained on a large corpus of images and text. 
The model may then be finetuned for specific downstream tasks, such as image 
classification, object detection, and image captioning. For this paper, we applied the 
concept of contrastive learning by replacing the text encoder with a graph encoder and 
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used a pre-trained image encoder, which we trained first within a convolutional 
autoencoder model Figure 6. In the next training step, only the graph encoder is 
learnable by contrastive learning between the graph and its corresponding floorplan 
raster image, as shown in Figure 7. 

Figure 6. Learning phase of the CNN encoder and decoder components using a convolutional 
autoencoder model. 

Figure 7. Contrastive learning between graph and images (adapted from: Radford et al., 2021) 

The third method for training the graph encoder is the Graph Encoder-CNN 
Decoder. This method replaces only the convolution encoder part from the 
convolutional autoencoder model (Figure 6) with a graph encoder. The original CNN 
decoder is trained with a graph encoder consisting of stacked GNN layers, particularly 
Graph Sage (Hamilton et al., 2018) (Figure 8). The model learns the representation of 
the graph input data by compressing it into a lower-dimensional latent space and then 
constructing the corresponding floorplan image from this compressed representation. 
The model is trained by minimising the difference between input and constructed data. 
This model could be used as an end-to-end approach to generate the floorplan image 
from an input graph. However, we only used the trained graph encoder part in the 
downstream floorplan generation task. 

Figure 8. Graph encoder/CNN decoder. 
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3.3. VISUALISING THE GRAPH EMBEDDINGS 

After training the graph encoder separately to learn the embeddings of the graphs 
corresponding to the floorplans in the training set, we visualised the output graph 
embeddings with the corresponding floorplan images using the Embedding Projector 
in Tensorboard. To visually assess the effectiveness of the learned embeddings, it is 
possible to randomly select a sample of floorplans and evaluate the K-nearest similar 
plans according to the graph embeddings. An effective graph encoder model should 
embed similar graphs with similar embeddings to be closer and dissimilar graphs 
farther apart in the latent space. 

3.4. DIFFUSION MODEL TRAINING 

We trained the Stable Diffusion model on a single NVidia P100 GPU using PyTorch 
implementation. Our Stable Diffusion model consists of the pre-trained graph encoder 
and the image generator component (Figure 9). The training parameters of the Stable 
Diffusion model are 1000 noising steps, an image size of 64x64 pixels for faster 
training, training epochs of 1500 epochs with a batch size of 8, and a learning rate of 
0.0003. Each of the three trained models took 12 hours to train with the parameters 
mentioned above. 

Figure 9. Proposed Stable Diffusion: graph-image mapping (adapted from: Ramesh et al., 2022). 

3.5. POST-PROCESSING 

We employed Real-ESRGAN (Wang et al., 2021), a super-resolution model, to 
enhance the generated lower-resolution images by up-sampling the output four times 
from 64x64 pixels to 256x256 pixels. This step allowed us to obtain higher-quality 
floorplan images without having to perform training on larger images in the Stable 
Diffusion model (Figure 10). 

Figure 10. The post-processing step using the super-resolution model to enhance the quality of the 
generated image, then applying wall alignment. 
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4. Results and Discussion 

We evaluated the three versions of the generative models, denoted as Model A, Model 
B, and Model C, using three metrics focusing on image generation performance: 
Fréchet Inception Distance (FID), Intersection over Union (IoU) and survey 
questionnaire.   

FID is a metric used to evaluate the quality of generated images by comparing them 
to a set of real images. It is a widely used measure in the field of GANs and generative 
models in general (Heusel et al., 2018).  A lower FID score indicates that the generated 
images are of high quality and diversity. However, an FID score for architectural 
floorplan generation does not consider essential architectural criteria, such as the 
conditional program of the input. Hence, we developed a method for calculating the 
Intersection over Union (IoU) between the program of the output-generated floorplan 
and the ground truth. The analysis of variance (ANOVA) test, applied to the IoU 
metric, indicated a significant difference among the models (F=51.95, p<0.001). 
Subsequently, we used a post-hoc analysis to explore specific group differences. The 
post-hoc analysis, with all p-values less than 0.001, revealed significant differences 
between all pairs of models, reinforcing the ANOVA findings. 

Besides the above computational methods, we developed a survey questionnaire to 
assess the quality of the generated floorplans from a human perspective. We used a 
form containing 15 samples of generated floorplans, five from each model in random 
order, populating 60 random forms, each with 15 different floorplans selected from the 
test set. Sixty architectural students responded to the survey. Employing repeated 
measures ANOVA to analyse students’ responses indicated a statistically significant 
(F=67.73, p<0.001) difference between the models. A subsequent post-hoc analysis 
(p<0.001) showed a significant difference between Models A and C, as well as B and 
C, but none between A and B. 

Table 1: compares the FID, IoU and the survey questionnaire for each model on the test set. 

Model Graph 

Encoder 

Graph Enc. 

Training Time 

SD        

Training Time 

FID IoU 

mean   -   std 

Human Eval. 

mean   -   std 

A Graph2Vec 1 min. 12 hours 66.9 0.88 0.12 3.60 1.19 

B Contrastive 

Learning 

8 hours 12 hours 72.1 0.8 0.12 3.70 1.18 

C Graph Enc. -

CNN Dec. 

12 hours 12 hours 134.5 0.69 0.28 2.35 1.3 

From a qualitative point of view, the Stable Diffusion model generates better 
floorplans in terms of the rooms' architectural qualities when conditioned with a pre-
trained whole-graph embedding (Figure 11). This paper's Graph2Vec and contrastive 
learning methods generate superior representational capabilities compared to 
alternative graph encoders and have close scores across the FID, IoU, and human 
evaluation. On the other hand, the Graph Encoder-CNN Decoder produced the least 
favourable results in terms of FID, IoU, and human visual inspection. Interestingly, the 
computational scores are close to human evaluation in terms of generation quality. 
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Generally, three factors influence the quality of the generated output: the quality of 
the pre-trained graph embeddings, the length of the embedding vectors, and the 
generative model itself. First, the quality of the pre-trained graph embeddings is a 
limitation of the Stable Diffusion generation. In this aspect, the Graph2Vec and the 
graph encoder based on contrastive learning outperform the third method, hence 
generating floorplans from the Stable Diffusion model that are highly similar to the 
ground truth. The second limitation is the length of the embedding vectors. Generally, 
higher dimensional latent space can capture more information to some extent. Last, the 
generative model itself, especially the design of the loss function, penalises the model 
for generating outputs that lack architectural coherence. Future investigations may 
consider diversifying the types of datasets used for training to enhance the model's 
adaptability and exploring the model's applicability in non-residential or diverse 
cultural contexts. 

Figure 11. A comparison between the generated floorplans and the ground truth for the same input 
graph using the three proposed methods. 

5. Conclusion 

This research proposes a deep-learning multimodal architecture that uses GNN and the 
Stable Diffusion model to learn the topological and spatial information of architectural 
floorplans. Eight hundred samples from the RPLAN dataset were used for training and 
200 for testing. Three different evaluation metrics show that our proposed method, 
which replaces the text encoder with a pre-trained graph encoder, generates high-
quality architectural floorplans. However, the quality of the graph embeddings, the 
length of the embedding vectors, and the architecture of the generative model influence 
the quality of the generated output. The Graph2Vec and the graph encoder based on 
contrastive learning methods produced superior representations compared to the third 
graph encoder. Overall, the proposed method has significant potential to assist 
architects in the early design stages, enabling them to select the most suitable floorplan 
for their design needs. 
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