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Abstract. Urban vitality serves as the linchpin for sustainable urban 
development. Being the most extensively utilized public space within 
cities, augmenting street vitality bears paramount importance in 
accelerating design in human-centric habitats. This study employs 
spatial analysis and machine learning methods to explore the potential 
nonlinear relationships and local threshold effects between the built 
environment (BE) and street vitality based on multi-source data. This 
investigation provides support for the quantitative assessment and 
optimization of street vitality. Initially, using collected street view 
images, street spatial elements are extracted through deep learning 
algorithms. Subsequently, integrating multiple data sources, machine 
learning methods are employed to quantify the impact and interactions 
of the built environment on street vitality. Illustrated with the case of 
Dingshu, the feasibility of this process is demonstrated. By examining 
the correlation and underlying mechanisms between the built 
environment and street vitality, this study aids decision-makers in 
leveraging technological means to expedite design processes and create 
human-centric cities. 

Keywords.  Nonlinear Relationship, Built Environment, Street 
Vitality, GBDT-SHAP, Interaction Effect. 

1. Introduction 
Urban vitality constitutes the bedrock of sustainable urban development and is crucial 
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in creating high-quality spaces. Streets, regarded as the primary "organs" of a city and 
vital public spaces, play a pivotal role in enhancing the living environment of urban 
residents. During the wave of technological advancements, design processes have been 
accelerated. However, the lack of understanding about the objective patterns of the 
correlation between street-level built environment (BE) elements and individual daily 
activities, resulting in a series of issues, such as declining urban spatial quality, 
uncontrolled urban sprawl, and environmental pollution. Therefore, we need to 
uncover the complex relationships between BE and urban vitality to support human-
centric urban design and develop liveable cities. 

Jacobs initially conceptualized urban vitality as "street life over a 24-h period". 
From a perspective rooted in urban sociology, Lynch suggested that vitality reflects a 
place's capacity to fulfil individual survival and development. Gehl emphasized that 
urban vitality transcends mere population count on a street; it primarily concerns how 
people utilize street spaces. Montgomery further proposed that a vibrant place entails 
diverse activities and a continuous flow of people on streets over a 24-hour cycle. 
Fundamentally, the core of street vitality resides in the presence of people on the streets.  

Prior research has indicated a close relationship between street vitality and built 
environment elements such as street morphology and functionality (Marcus, 2010; 
Oliveira, 2013; Ye and van Nes, 2014). Traditional research methodology using linear 
regression models does not cater to the need of uncovering the complex relationships 
between street vitality and the built environment variables. With the evolution of 
emerging computational analysis techniques, there is a growing trend in using machine 
learning models to explore the non-linear relationship between street vitality and the 
built environment. Compared to traditional models, machine learning methods have 
exhibited superior performance and effectiveness in predicting vitality based on the 
built environment. However, the "black box" nature of this approach, where the reasons 
remain unclear, has faced criticism due to inherent limitations. The emergence of 
eXplainable Artificial Intelligence (XAI) models, particularly the Shapley Additive 
exPlanations (SHAP), offers a new pathway to enhance the interpretability of machine 
learning. SHAP can identify variable importance in predictions and analyse non-linear 
relationships and interaction effects. Presently, interpretable machine learning methods 
have not been fully employed to examine the non-linear relationships and interaction 
effects between street vitality and the built environment. 

To bridge this gap, this study primarily focuses on the vitality of liveable streets, 
closely linked to residents' daily lives. It begins by collecting data from multiple sources 
and integrating 3D street spatial elements, urban morphology and functionality data. 
Subsequently, a set of BE indicators are extracted from the multi-source data. The 
GBDT model is utilized to quantify the relationship between street vitality (1532 streets 
in Dingshu, in this case) and the built environment factors. This aims to apply machine 
learning interpretative algorithms from existing literature to identify key influencing 
factors and capture potential influencing factors. Following this, the SHAP model is 
used to explain the non-linear relationships and interactions between the built 
environment elements. Specific research inquiries focus on: 1) applying interpretative 
machine learning models to identify influential factors and capture potential 
influencing factors; 2) investigating the driving factors dominating street vitality; 3) 
uncovering the potential nature and threshold of BE elements impacting street vitality. 
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2. Study Area and Data 

2.1. STUDY AREA 
Dingshu Town, located in the city of Wuxi in the eastern part of Jiangsu Province, 
China, represents a typical small Chinese city. Through natural growth and a long 
historical evolution, Dingshu has developed a complex and diverse street space. The 
streets exhibit a rich variety of forms and functions, serving as a representative case for 
studying street vitality. This study focuses on around the central area of Dingshu, 
covering a total of 1,532 streets. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Study area and Baidu Street View Image acquisition 

2.2. DATA 

2.2.1. Morphological Data 
Morphological data primarily encompass street network morphology and architectural 
fabric morphology. The morphological data is mainly sourced from OpenStreetMap 
(OSM). Considering potential delays in data updates in certain regions of China, Baidu 
Map (one of the most prevalent map service platforms in China) was utilized for 
verification and supplementation purposes. The original street network data underwent 
cleansing, topological verification, and processing, resulting in a total acquisition of 
1,532 streets. 

2.2.2. Functional Data 
Functional data pertains primarily to Point of Interest (POI) data. The distribution of 
POIs on both sides of the roads can effectively reflect the functional characteristics of 
the streets. 

On May 10, 2022, via Python, requests were sent to the Baidu Map API, gathering 
12,920 POIs across 15 categories. Each POI data includes the name, latitude, longitude, 
address, category, and other pertinent information of the geographic entity. 
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2.2.3. Street View Images 
Street View Images (SVI) have recently been widely accepted as an effective means to 
quantify the built environment of streets (Kelly et al., 2013; Shen et al., 2018; Ye et al., 
2019). 

Based on street network data, sampling points were generated at 20m intervals 
along the road centrelines. Following cleansing and organization, the central area of 
Dingshu Town comprised a total of 17,720 sampling points. Geographic coordinates 
of each point can be obtained in GIS platforms. Additionally, the image size is set to 
960×720 pixels. Post data cleansing, this study could utilize 16,250 valid SVIs. 

3. Methodology 

3.1. VARIABLES 

3.1.1. Extraction of Street Spatial Elements 
To extract street spatial elements corresponding to each sampling point from the street 
view images, we employed a convolutional neural network (CNN)-based semantic 
segmentation method. The spatial elements extracted in this study include nine 
categories, which are road, sidewalk, building, wall, vegetation, sky, person, bicyclist 
and car. 

First, we selected 50 street view images covering various types of streets in Ding 
Shu as experimental samples and manually annotated spatial elements on these 
samples, using them as ground truth. Subsequently, we employed three neural network 
models pre-trained on the Cityscapes Data dataset for urban street view semantic 
segmentation: Dilated ResNet-105, Ademxapp Model A1, and Multi-scale Context 
Aggregation Net. Further comparison between the pixel quantities of various spatial 
elements in the sample images and the ground truth allowed the determination of the 
recognition accuracy of each neural network model. 

 As can be seen in Figure 2, the Ademxapp model exhibited weaknesses in sky 
recognition, while the multi-scale context aggregation model inaccurately identified 
distant individuals. Consequently, we selected the Dilated ResNet-105, achieving the 
highest accuracy among the 50 sample images, for final SVI segmentation. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Comparison of neural network recognition of street view images 
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3.1.2. Construction of Built Environment Indicator Set 
Jacobs believes street vitality comes from enough people on the street (Jacobs, 1961). 
We employed the number of individuals to represent street vitality. The count of 
individuals was derived from street view images, which were mapped to each sampling 
point. 

The key to constructing an index system lies in effectively representing the 
elements of the built environment. Referring to the "5D" index system proposed by 
Ewing et al., which includes Density, Diversity, Design, Destination accessibility, and 
Distance to transit across five dimensions, this study comprehensively considers the 
existing research on the construction of indicators related to the built environment. In 
total, 12 indicators have been selected for the measurement of the built environment, 
as shown in Table 1. 

Table 1. Independent variables and description 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. MODELLING APPROACH 
To avoid errors associated with individual sampling points, including white noise/data 
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errors, the obtained sampling points were mapped onto the corresponding road 
segments. The average values of the built environment indicators corresponding to 
each sampling point were used to represent the built environment element values of the 
respective road segment. Here, road segments were considered as basic units 
segmented by road intersections, while segments with wider roadways, including both 
forward and backward bidirectional sampling points, were encompassed. 

3.2.1. GDBT 
The Gradient Boosting Decision Tree (GBDT) model is employed to address issues 
with highly concentrated data feature distributions, demonstrating higher accuracy 
compared to algorithms such as Support Vector Machines and Random Forests. 
Moreover, GBDT can be used to capture any irregular relationships among variables, 
and modelers are not required to pre-specify these relationships in advance.  

3.2.2. SHAP 
Although the GBDT model surpasses traditional linear regression models in accuracy 
and generalization, its interpretability falls far short compared to linear models. 
Therefore, this study integrates the SHAP (SHapley Additive exPlanations) method to 
address this "black box" issue.  

SHAP, a unified approach, aims to explain the output of any machine learning 
model. The SHAP method, grounded in cooperative game theory, revolves around 
computing the marginal contributions of feature observation points when introduced 
into the model.  

4. Results and Discussion 
Initially, a Pearson correlation coefficient test was conducted to determine the influence 
of the considered feature variables on the parameters of street vitality. Variables with 
significant correlations (P < 0.5) were selected from the initial variable pool.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Pearson correlation coefficient test 
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After variable filtration and data processing, all samples were randomly divided 
into a training dataset (80%) and a testing dataset (20%) for modelling purposes. Post-
testing, the GBDT model achieved a Model Accuracy of 0.935, making it a suitable 
model for predicting Dingshu street vitality. 

Subsequently, for immediate comprehension and interpretation of the entire model, 
we require global interpretability. Firstly, a feature importance analysis was conducted 
on the model to gauge the model's dependency on specific features. The SHAP 
contribution analysis utilized Shapley values to determine the degree of contribution of 
the built environment to street vitality. Factors with higher contribution values are 
crucial in predicting street vitality values. The globally established SHAP analysis 
results are depicted in the figure 4 for immediate understanding. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Importance ranking diagram and density scatter diagram of built environment feature 

 As we can see from figure 4, the built environment indicators that exert the greatest 
influence on predicting street vitality, listed in descending order, are visual pavement 
rate, enclosure, road width, openness, population density, and distance from the nearest 
CBD. 

This outcome is relatively intuitive. For instance, a larger proportion of pedestrian 
pathways provides more space for human activities, thus contributing to the 
enhancement of street vitality. Similarly, reduced enclosure in streets enhances the 
sense of safety, encouraging individuals to linger longer. However, there are 
exceptions, for instance, if the top-ranked indicators significantly impact the predictive 
outcomes, their effects might be dispersed. Furthermore, the distribution of points on 
the graph isn't entirely symmetrical along the central axis. Hence, delving deeper into 
their inherent reasons is imperative. 

To achieve this objective, we selected the top 9 indicators in the global feature 
importance ranking and analysed how individual indicator features influence the 
overall predictive outcomes based on their SHAP partial dependence plots. 
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Figure 5. Nonlinear relationships between built environment and street vitality 

Based on the partial dependence plot (PDP), marginal effects of various features on 
the predictive outcomes of machine learning models are depicted. As shown in the 
figure 5, these plots illustrate the nonlinear relationships between the dependent 
variable (street vitality) and the top 9 important variables in terms of their significance. 

Furthermore, we aim to more precisely comprehend the impact thresholds of these 
crucial influencing factors on street vitality. To achieve this, we conducted individual 
PDP tests for each element. This exploration allows for a more in-depth investigation 
into the specific interrelationships among the key driving factors influencing street 
vitality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. PDPs of Top 9 built environment features 
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As illustrated in the figure 6, we observed localized impact trends and threshold 
effects among certain built environment elements concerning street vitality. Notably, 
there exists a positive correlation between "visual pavement" and street vitality, 
indicating that wider sidewalks correspond to higher street vitality. However, this 
growth reaches a threshold after a sidewalk width of 10 meters, suggesting that 
sidewalk widths exceeding 10 meters do not further enhance street vitality. This might 
be due to an excessive width ratio of sidewalks, which often accommodate non-
motorized traffic, thereby restricting actual pedestrian behaviour within these spaces. 

"Openness," on the other hand, demonstrates an overall negative correlation with 
street vitality but exhibits a specific threshold effect. When openness falls within the 
range of 0.1 to 0.2, there is a significant increase in street vitality. However, when 
openness exceeds 0.25, street vitality significantly decreases. This suggests that while 
increasing openness at lower levels can enhance safety, surpassing a certain threshold 
in openness leads to reduced enclosure, subsequently decreasing human interaction. 

The influence of "near CBD" and "near Bus" on vitality is similar. Within a 500-
meter range, vitality increases with distance, reaching a peak around the 500-meter 
threshold. Within the range of 500 to 2000 meters, street vitality decreases as the 
distance increases. Beyond 2000 meters, street vitality slightly increases and stabilizes 
near 2500 meters. It is evident that an increase in population density and green space 
ratio generally leads to higher street vitality values. 

5. Conclusion 
 This study employed the machine learning model GBDT-SHAP to analyze the 
nonlinear effects and threshold impacts of the built environment on street vitality. It 
explored the latent relationship between urban built environments and urban vitality, 
monitored the marginal benefits of each urban built environment factor, and derived 
empirical thresholds. These findings offer scientific references for urban planners 
aiming to enhance street space vitality and ensure residents' mobility and quality of life. 

However, several limitations persist in this research: 
The study primarily focused on Dingshu as an example for empirical research and 

analysis. The conclusions drawn might not universally apply to all similarly scaled 
small cities. Future studies should encompass more cases to ensure the generalizability 
of the conclusions. 

This study mainly explored the nonlinear relationship between street vitality and 
related built environment indicators from a global perspective. Different types of streets 
may exhibit distinct patterns. Future plans include categorizing streets based on their 
characteristics and conducting local feature research for different street types. 

Street vitality in this study was characterized solely by the number of people 
extracted from street view images, lacking analysis regarding temporal and spatial 
dynamics. We are currently exploring vitality representation using continuous spatial 
metrics, planning to integrate various data sources to ensure the objectivity and 
credibility of vitality representation. 
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