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Abstract. This study systematically evaluates and compares the 
effectiveness of 9 prevalent indexes for measuring the compactness of 
building distributions at the meso-scale through comparative 
experiments. Experiments primarily employ an ideal sample with 
controlled variables, and superior indicators are further tested in actual 
urban areas. The assessment, grounded in sensitivity and consistency, 
adopts rigorous quantitative criteria and is compared against a baseline 
computed by cohesion evaluation based on graph (GCE). Research 
findings indicate: (a) when quantifying compactness differences in 
same scale regions: Directly employing GCE or the improved T* is 
recommended; (b) when comparing compactness differences in regions 
of diverse scales, GCE is recommended; if using ENN or ANN, 
supplementary evaluation is necessary; (c) in studies of urban 
morphology effects mechanisms, it is advisable to utilize GCE instead 
of T*, as T* presents collinearity issues with footprint density. None of 
the remaining indexes is recommended for the above scenario at meso-
scale. This research distinctly reveals the limitations of prevalent 
compactness indexes at meso-scale and suggests superior alternatives. 

Keywords.  urban morphology measurement, building distribution 
compactness, compactness indexes, index applicability 

1. Introduction 

The compactness indexes under consideration in this study are morphological indexes 
used to measure the compactness of specific urban elements or types (Lin, 1998). 
Originating in macro-level urban planning research, these indicators have a 
longstanding history and matured over time. Initially applied to assess the clustering of 
land patches, public green spaces, or city facilities, compactness indicators were later 
introduced to the meso-level architectural research domain for evaluating the 
compactness of buildings or other elements (Ma and Liu, 2021, Zhuang and Zhou, 
2019). The compactness of building distribution aids in automated identification of 
urban textures (Colaninno et al., 2011) and has been confirmed to significantly impact 
the microclimate around buildings (Wang et al., 2021). However, there are notable 
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differences in diverse research scales, leading to variations in the methods used to 
describe the study objects. Directly applying prevalent macro-scale compactness 
indexes from urban morphology studies to calculate the compactness of objects at 
meso-scale in urban design raises questions about their compatibility.  

Therefore, this paper aims to point out efficient and superior compactness indexes 
in computational urban design, specifically at the meso-scale, through the design of 
ideal samples, comparative experimental analysis and rigorous evaluation criteria. The 
methods and results of this experiment provide detailed parameters and scientific 
references for measuring meso-scale building distribution compactness. 

2. Method 

2.1. SAMPLE DATA 

Actual architectural clusters exhibit significant complexity and diversity (Figure 1a), 
characterized by multidimensional features. To conduct effective comparative 
experiments, it is essential to construct ideal samples that abstract these real-world 
samples, while controlling for other features like regional density or individual 
differences. This ensures a clear understanding of how indexes values respond to 
variations in a single feature. Ideal samples design process is detailed as follows: 

1. Three sample groups (S200, S500, S1000, with numbers representing area 
lengths) are set based on common scale parameters in existing research. 

2. Using building base data from Gaode Map, we rough estimate the size and 
density of buildings footprint within the outer ring of Shanghai, China. Adopting the 
mean area (397.6m²) and count per hectare (lower quartile = 4) as references, each 
building is set at 20×20m, with a controlled density of 0.16 for each scale group. 

3. As the fundamental characteristic of urban texture (Shen et al., 2021), the 
proximity distance between buildings (d) is taken as the attribute, and 7-level discrete 
variables are set from 0m to 30m at intervals of 5m. 

Additionally, two types of samples are introduced: samples with 5% (6.25% for 
group S200) outliers (increase irregularity in distribution, with consistent outlier 
locations in each sample group and neighbor distances ≥30m), and samples with 
multiple centers (k=4, with fixed centroid positions) to test the performance of indexes 
when further complexity is introduced. Finally, the matrices for the three sample 
groups are depicted in Figure 2b.  

Figure 1. Actual form of buildings in urban and ideal samples 
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2.2. PREVALENT COMPACTNESS INDEXES AND CALCULATION 

After the review of indexes used in existing studies, this experiment finally selected 9 
prevalent compactness indexes for testing: 

1. Circularity compactness Index (COLE) (Cole, 1964): Measures based on the 
minimum bounding circle area. This index is widely applied in city-scale studies (Liu 
and Long, 2021). 

2. Convex Hull Area Compactness Index (CHAD) (Liu and Long, 2021): 
Measures based on the convex hull area. It was applied in studies concerning elements 
buffer zones (Colaninno et al., 2011). 

3. Euclidean Mean Nearest Neighbor Distance (ENN): Provides a simple and 
intuitive representation of spatial distribution based on the centroid distance of 
neighboring elements. It sees in both urban areas (Dietzel et al., 2005) and city-scale 
studies (Falahatkar and Rezaei, 2020). 

4. Average Nearest Neighbor Ratio (ANN): Measures compactness by 
comparing the ratio of the average nearest neighbor distance to the expected value. It 
sees in many community-scale studies (Akrofi and Okitasari, 2023). 

5. Buildings Proximity (PROX) (Colaninno et al., 2006): Measures compactness 
based on the proximity of the center to other elements. 

6. Global Moran's I (MI) (Moran, 1950): A spatial autocorrelation measurement 
method used to calculate the compactness of spatial layouts based on grid or element 
attributes. It is widely used at various scales, as cities (Liu et al., 2021), urban areas 
(Ma and Liu, 2021), and blocks (Rahman et al., 2022). 

7. Degree of Urban Dispersion (DIS) (Jaeger et al., 2009): Measures the 
dispersion of distribution by weighted calculation of pixel distances. 

8. Average Gravity Index (T) (Thinh et al., 2002): Introduces Newton's law of 
universal gravitation to calculate urban form compactness. It could be found in urban 
areas (Jin et al., 2018) and city-scale (Thinh et al., 2002).  

9. Normalized Compact Index (NCI) (Zhao et al., 2011): As claiming to address 
the sensitivity issue of the T to the scale of the research object, it has been applied on 
multiple scales, like city-scale (Jia and Tang, 2019) and buffer zones (Ji et al., 2023). 

The diverse application scales of these indicators in existing studies, along with the 
lack of clarity on specific calculation methods and parameters in some studies, hinder 
reuse. Here, Table 1 provides detailed descriptions of the calculation formulas for these 
indexes and the specific calculation methods and parameters in this experiment.  

Table 1 Calculation formulas, Tools (in ArcGIS Pro 3.0.2) and parameters of indexes in experiment 

Index and calculation formula Value range Tools Parameter 

COLE = ∑ 𝑎𝑖 𝐴 𝑐⁄  

𝑎𝑖 - area of building 𝑖 ; 𝐴 𝑐 - minimum 

circumscribed circle area of the building group 

0 <

COLE ≤ 1  

Direct ratio 

Minimum 

Bounding 

Geometry & 

Geometry Type: 

Circle 
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2.3. INDEX EVALUATION CRITERIA: SENSITIVITY & CONSISTENCY 

The ideal indexes should be use-easy, with moderate computational requirements and 
devoid of complex tuning processes. Furthermore, for the meso-scale, the accuracy of 
results should fall within an appropriate range. To address the question of evaluating 
the appropriateness of result accuracy, this experiment establishes sensitivity and 
consistency criteria and provides a quantitative method for assessing the effectiveness 
of indexes calculations. 

Sensitivity criteria are employed to detect whether indicators exhibit abnormal 
responses to different compactness distributions within the same scale.   This is 
categorized into C1-Sensitivity[S], C2-Sensitivity[O], and C3-Sensitivity[M] for 
different aggregation scenarios. The detailed assessment items are as Table 2. 

Consistency criteria are to examine whether indexes demonstrate consistent 
response values to the same compactness distribution at different area scales, or if 

CHAD = ∑ 𝑎𝑖 𝐴 ℎ𝑢𝑙𝑙⁄  

𝑎𝑖- area of building 𝑖; 𝐴 ℎ𝑢𝑙𝑙- minimum convex 

hull area of the building group 

0 <

CHAD ≤ 1  

Direct ratio 

Field calculation 
Geometry Type: 

Convex hull 

ENN = ∑ 𝑑𝑖 n⁄  

n- number of buildings  

di- Euclidean distance between building 𝑖  and 

its nearest neighbor 

ENN > 0  

Inverse ratio Average Nearest 

Neighbor 

Distance Method: 

Euclidean; Area: 

unit area 
ANN = ∑ 𝑑𝑖 n⁄ 0.5 √𝑛 𝐴⁄⁄⁄  

𝑛- number of buildings; 𝐴-unit area 

ANN > 0  

Inverse ratio 

PROX = ∑ 𝑎𝑖 ∑ d2(i, c)

n

i=1

⁄ · n 

n- number of buildings; ai- area of building 𝑖; 

d(i, c)- Euclidean distance between the centers 

of building 𝑖 and unit 

PROX > 0  

Direct ratio 

Write the formula in 

python 
- 

MI =
n ∑ ∑ wi,j(Xi − X̅)(Xj − X̅)n

j=1
n
i=1

(∑ ∑ wi,j
N
j=1

N
i=1 )(Xi − X̅)2

 

n- number of grids; Xi,Xj, wi,j- building area in 

grid 𝑖 and 𝑗 and the spatial weight between; X̅- 

expected area 

−1 ≤ MI ≤

1  

Direct ratio 

Summarize 

Within & Spatial 

Autocorrelation  

Grid length: 10m; 

Conceptualization: 

Inverse distance; 

Dis Band: 0 

DIS =
1

𝑛
∑

1

𝑛𝑖
(∑ (√2𝑑(𝑖, 𝑗) + 1 −

𝑛𝑖
𝑗=1

𝑛
𝑖=1

1) + 𝐶), 𝐶 = √0.97428 𝑏 + 1.046 −

 0.996249, 

𝑛- Total grid number; 𝑛𝑖- grids number within 

the view scope; 𝑑(𝑖, 𝑗) - Euclidean distance 

between grid 𝑖 and 𝑗; 𝑏-gird length(m) 

DIS > 0  

Inverse ratio 

Write the formula in 

python 

𝑛&𝑛𝑖: number of 

all grids in unit; 

b:20m 

T = ∑
𝑋𝑖𝑋𝑗

𝑑2(𝑖, 𝑗)
𝑛(𝑛 − 1) 2⁄⁄  

𝑛- grids number; 𝑋𝑖,𝑋𝑗 , 𝑑(𝑖, 𝑗)- building area in 

grid 𝑖 and 𝑗 and the distance between 

T > 0  

Direct ratio Summarize 

Within & Write the 

formula in python 

Grid length: 10m 

n: number of all 

grids in unit; c: 1 NCI = 𝑇 𝑇𝑚𝑎𝑥⁄  

𝑇𝑚𝑎𝑥-T value computed by the equivalent circle 

0 < NCI ≤

1  

Direct ratio 
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differences are acceptable. Specific methods include diff analysis (calculating the sum 
of squared differences per two groups (SSD) and the coefficient of determination(R2)), 
rank sum tests per two groups, and the Kruskal-Wallis H test for all three groups.  

Additionally, drawing from the concept of cluster evaluation in data mining (Tan 
et al., 2016), we apply the cohesion evaluation based on graph (GCE, Formula 1, where 
𝑎𝑖𝑎𝑗 represent the area product of buildings i and j within pairs of grids in the region, 
𝑑(𝑖, 𝑗) is the centroid distance, and 𝐶 is a constant to prevent overly small values, set 
to 10 here) and measure its sensitivity. It serves as a baseline for consistency evaluation. 
If other indexes do not meet this baseline, researchers are advised to directly employ 
this baseline formula for compactness measurements. 

Table 2. Detailed assessment items and interpretation of sensitivity criteria 

C1. Sensitivity [S] 

c1. Any S-group is monotone (if not: the measurement results are not credible) 

c2. The differences among values within a S-group is all over 0.005 (if not: nearest neighbors distance differences 

are hardly perceptible under the parameters of this experiment) 

C2. Sensitivity [O] 

c3. Any O-group is monotone (if not: the measurement results are not credible) 

c4. The differences among values within a O-group is all over 0.005 (if not: nearest neighbors distance 

differences are hardly perceptible under the parameters of this experiment) 

c5. The difference between group S&O is one-sided (if not: the presence of outliers leads to measurement errors) 

c6. The difference between group S&O is all over 0.005 (if not: outliers are hardly perceptible under the 

parameters of this experiment) 

c7. The difference between the groups S&O is below 15% (if not: 5% outliers result in a numerical difference of 

more than 3 times) 

C3. Sensitivity [M] 

c8. Any M-group is monotone (if not: the measurement results are not credible) 

c9. The difference among values within a M-group is all over 0.005 (if not: nearest neighbors distance differences 

are hardly perceptible under the parameters of this experiment) 

c10.The difference between group S&M is one-sided (if not: the presence of multi-centre feature leads to 

measurement errors) 

c11.The difference between group S&M is all over 0.005 (if not: multi-centre feature is hardly perceptible under 

the parameters of this experiment) 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(GCE) =
∑ 𝑎𝑖𝑎𝑗𝑑(𝑖, 𝑗)𝑖∈𝐶,𝑗∈𝐶

∑ 𝑎𝑖𝑎𝑗𝑖∈𝐶,𝑗∈𝐶
∗

𝐶

𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
(1) 

3. Result and Discuss 

Results of indexes values calculated for all samples see Figure 2. 

3.1. ABNORMALITIES IN SENSITIVITY 

In urban design, comparing the morphological conditions before and after the design 
of a particular area or the differences between different design schemes is a common 
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analytical scenario.  However, not all commonly used compactness indices prove 
effective in these situations.  Computed results are scrutinized based on the sensitivity 
criteria one by one, and the failure items detected were summarized in Table 3. 

Figure 2 Indexes calculation results (quadratic polynomial regression, 50% confidence interval) 

Table 3 Results of index sensitivity evaluation 

Criteria Index 

ENN ANN PROX CHAD COLE T T* NCI MI DIS baseline 

C1 
c1                       

c2      ×   ×   

C2 

c3            

c4    × × ×   ×   

c5         ×   

c6  × ×  × ×  × ×   

c7   × × ×       

C3 

c8         ×   

c9      ×   ×   

c10            

c11 × ×       ×     ×     

c7 judgements is according to red values in Table 4. 
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Table 4 Analysis of differences between values from group S&O 

 ENN ANN PROX CHAD COLE T T* NCI MI DIS baseline 

S200 9.4% 9.4% 19.6% 25.1% 38.2% 3.3% 3.3% 3.3% 7.8% 4.0% 9.2% 

S500 12.9% 12.9% 13.1% 43.2% 45.2% 3.3% 3.3% 3.3% 7.0% 2.6% 5.9% 

S1000 9.4% 9.4% 12.9% 47.9% 44.2% 3.4% 3.4% 3.4% 7.7% 2.5% 5.8% 

all  10.6% 10.6% 15.2% 38.7% 42.5% 3.3% 3.3% 3.3% 7.5% 3.0% 6.9% 

the Ratio is the mean of the ratio of every diff of pair values from group S & O and value from group O. 

Evidently, the baseline demonstrates excellent sensitivity in the experiment.  
Additionally, a tested multi-scale comparison using T 𝑎𝑟𝑒𝑎⁄  (Jin et al., 2018), referred 
to as T*, showed a significant improvement in sensitivity. While DIS exhibits good 
sensitivity in this experiment, its binary raster-based calculation method may lack 
precision with diverse individual building morphologies. In summary, when 
comparing building distribution differences within the same scale, GCE method or the 
improved T* are suitable choices. 

3.2. ABNORMALITIES IN CONSISTENCY 

In urban design comparisons involving multiple cases, there often exist scale 
differences. Haphazard applying compactness indexes for comparative calculations 
can pose significant issues. According to consistency analysis results (Table 5), 

● From the results of rank sum tests, ENN and ANN exhibit the best consistency, 

while PROX, CHAD, COLE, MI, and NCI show consistent differences, though not 

statistically significant. DIS and T display significant consistency anomalies (Table 

5, red values). In contrast to the claims in existing studies, the consistency of T* 

does not significantly improve over T, still exhibiting notable differences. 

Table 5 Results of index consistency evaluation 

Index 

Diff Analysis (z-score normalization) Rank Sum Test 
K-W 

H Test 

S200, S500 S500, S1000 S200, S1000 S200,

S500 

S200,

S500 

S200,

S1000 

All 

group SSD R² SSD R² SSD R² 

ENN 0.000 1.000 0.000 1.000 0.000 1.000 - - - - 

ANN 0.000 1.000 0.000 1.000 0.000 1.000 - - - - 

PROX 0.071 0.990 0.001 1.000 0.092 0.987 - - - - 

CHAD 0.194 0.972 0.015 0.998 0.318 0.955 - - - - 

COLE 0.193 0.972 0.015 0.998 0.317 0.955 - - - - 

MI 0.444 0.937 0.030 0.996 0.689 0.903 - - - - 

NCI 0.424 0.939 0.046 0.993 0.732 0.895 - - - - 

DIS 20.139 -1.877 24.889 -1.333 24.578 -2.511 *** *** *** *** 

T 20.226 -1.911 16.102 -1.360 23.716 -2.372 *** *** *** *** 

T* 24.183 -2.455 22.324 -2.189 22.963 -2.455 *** *** *** *** 
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baseline 0.044 0.994 0.001 1.000 0.059 0.991 - - - - 

The higher the value of R², the better the consistency 

● Although PROX, CHAD, COLE, MI, and NCI show no significant differences in 

rank sum tests, their performance is not flawless (especially NCI, a cross-scale 

consistency indicator proposed in existing studies, exhibits decreasing values with 

increasing regional scales). Examining the difference analysis results, their 

consistency performance falls short of the baseline. 

Therefore, when analyzing the differences in the compactness of distributions 
across scales for multiple cases, we recommend directly using GCE. ENN and ANN 
should be used in conjunction with other indexes together. 

3.3. CASE STUDY: VERIFICATION AND COMPARISON OF BETTER IN-

DEXES 

To demonstrate the effectiveness and distinctions of the identified indices, practical 
calculations were conducted in the Jing'an District of Shanghai. T* and GCE were 
calculated based on S200, S500, and S1000 (Figure 3, a). Due to space limitations, 
visual results for T* at S500 and GCE at S500 and S1000 are presented (Figure 3, b-d, 
T* use k-medoids clustering for classification, GCE using equal interval) to illustrate 
the effectiveness and distinctions. 

Figure 3 The measured effect of T* and GCE in actual city area 

Based on Figure 3b and c, T* seems more capable of distinguishing different urban 
textures. We analyze the reasons for this phenomenon. In the sample experiment, we 
controlled the building density within regions, while in the actual measurements, these 
grids had varying building densities. Using the calculated values based on S200 (as the 
sample size was sufficient), Spearman and Pearson correlation tests were employed to 
analyze the correlation between T*, GCE, and footprint density (Table 6). The results 
indicate a strong correlation between T* and footprint density, while the correlation 
between GCE and footprint density is weak. In studies on the mechanisms of urban 
morphology effects, compactness and footprint density (or GSI) are often both 
included as independent variables in the fitting process. In such cases, simultaneous 
use of T* and footprint density introduces a significant issue of collinearity, whereas 
GCE demonstrate superior effective.  

Furthermore, GCE exhibits better consistency in actual measurements. Based on 
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Figure 3c and d, in several areas with approximate and uniform distributions 
(highlighted in red boxes), the values of the regions are essentially the same. 

Table 6 Correlation coefficient matrix for T*, GCE and footprint density 

  Spearman Correlation Test Pearson Correlation Test 

  fp density T* GCE fp density T* GCE 

fp density —— 0.955*** 0.219*** —— 0.929*** 0.367*** 

T*  —— 0.102***  —— 0.183*** 

GCE   ——   —— 

4. Conclusion 

This study systematically evaluated the applicability of compactness indexes for 
building distribution, providing clear reference for the appropriate measurements in 
different research scenarios.  The key conclusions are as follows: 

● When quantifying compactness differences in same scale regions: Directly 

employing GCE method or the improved T* is recommended.  

● When quantifying compactness differences in regions of diverse scales: Directly 

using GCE is recommended.  If using ENN and ANN, it is necessary to evaluate 

them in conjunction with other indexes.  

● In studies of urban morphology effect mechanisms: It is advised to use GCE instead 

of T* because of collinearity issues with footprint density, potentially not work. 

The study emphasizes the dependence of urban morphology measurement indices 
on application scenarios, research scales, and studied objects. A careful consideration 
of index calculation methods and an assessment of their applicability are necessary. 
Researchers should enhance their understanding of calculation formula, clarifying the 
principles and parameters of each measurement. 

Additionally, this study, rooted in interdisciplinary thinking, explored a more 
effective compactness measurement method, GCE, and provided detailed explanations. 
The results demonstrate the effectiveness of interdisciplinary exploration. 

As urban fine-grained governance continues to advance, the demand for high-
resolution urban morphology measurement increases. For meso- and micro-scale 
morphology measurement, the potential of morphology characterization systems based 
on regional geometric statistics appears limited. Therefore, we suggest that the future 
direction should involve the development of more accurate and comprehensive 
morphology characterization systems, integrating interdisciplinary methods. 
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