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Abstract. In the context of frequent extreme heat events, urban 
dwellers are increasingly exposed to heatwaves, leading to adverse 
health effects. It’s crucial to precisely quantify the risk of heat exposure 
faced by diverse demographic groups in various locations and 
environments. However, current research lacked multidimensional 
modelling and analysis involving diverse metrics. This research 
quantified the risks of heat exposure by utilizing WRF-LCZ numerical 
simulations to obtain data during extreme heat moments. It identified 
areas with high heat aggregation and integrated adaptation capabilities 
to confront heat hazards for three groups of vulnerable populations. The 
research further explores variations in different heat-aggregated areas, 
considering diverse aspects such as built environment, social attributes, 
and medical support. The results indicate that: 1) Heat-aggregated areas 
demonstrate the highest levels of heat exposure risk during heatwave 
events, regardless of any other factors. 2) Specific blocks in Heat-
aggregated Area 2 and 3 show significantly elevated heat exposure risks 
for residents under equivalent conditions, which may be influenced by 
poorer ventilation or higher relative humidity in the local areas. 
Research outputs regarding heat exposure risks can provide valuable 
insights for human environmental health, urban management and public 
facility planning. 
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health, Urban population, Weather research and forecasting (WRF), 
Mobile signaling. 

1. Introduction 
As global temperature rises, extreme weather events are becoming more and 
more frequent due to changing climatic environments. Among them, extreme 
heat events play a predominant role, increasingly impacting human society and 
activities, both in terms of the scale and intensity (Yin et al., 2023). Meanwhile, 
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the urbanization rate is expected to rise to 70% in the future, which indicates a 
higher urban population for residing, working and living. Therefore, it requires 
more scientific attention on urban built environment. 

Specifically, the urban thermal environment is a significant component of the built 
environment in cities, affecting directly the comfort of urban residents in daily 
production and activities. It underscores the urgency of quantifying the heat exposure 
risks faced by specific populations (Han & Bu, 2023). 

The heat exposure risks for different populations during extreme high-temperature 
weather are influenced by various factors. First, air temperature is the most immediate 
factor. It is clear that the heat exposure risk increases while the temperature rises in 
both located area and surrounding areas, implying a longer duration of sustained 
exposure in a high-temperature environment (Deng et al., 2023). Second, the extent of 
heat exposure risk during heatwaves is also influenced by the effectiveness of cooling 
measures adopted by individuals, the promptness of emergency services received, and 
the duration of these actions. The shorter time and closer proximity to emergency 
medical facilities help relieve from the impact of heatstroke or heat-related illnesses, 
while stronger treatment capabilities can alleviate symptoms and prevent multiple 
secondary organ failures (Choi et al., 2023). Third, the social characteristics of the 
population also affect their heat exposure risk and the ability to respond to heat hazards. 
According to China's Expert Consensus on Heatstroke Diagnosis and Treatment 
(2021), the elderly and children are most vulnerable to heat-related diseases, requiring 
accurate diagnosis and rapid response from medical centers. Therefore, the adaptation 
capacity towards heat disasters for each individual will be reduced as the density of 
vulnerable populations increases. To conclude, it is essential to precisely quantify the 
heat exposure risks regarding disparate urban populations, locations and environments, 
which will contribute to individual and public health. 

However, previous studies remained limitations in technological pathways, 
analytical methodologies, dataset dimensions, and precision constrain the accuracy and 
validity of executing quantitative analyses of heat exposure risk in populations. Firstly, 
acquiring real-time data on temperature, humidity, and other weather metrics relevant 
to thermal comfort at specific urban locations during heatwaves poses a significant 
challenge (Hao & Tong, 2023). This makes comparative analyses across different 
instances of high temperatures less feasible (Estoque et al., 2020). Secondly, it is 
notably difficult to directly capture the activity characteristics of urban populations 
during heatwave events. Thirdly, the lack of appropriate modeling, categorization and 
analysis methods at the city and neighborhood scales at city and neighborhood scales 
complicates the risk levels of heat exposure at specific times, populations and spaces, 
as well as an appropriate dynamic ranking (Zhu & Yuan, 2023). Therefore, it is 
challenging to establish a clear linkage between urban heat risk warning information 
and specific moments, population characteristics and spatial scales during extreme heat 
events (Li et al., 2023). It is equally challenging to provide suitable mitigation 
recommendations for different population areas and intervention characteristics to 
enhance public health. This research aims to address these issues preliminarily. 
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2. Methodology 
The study calculated the heat exposure risks by analyzing the results of WRF-LCZ 
simulations during extreme heat events. It identified areas with high heat exposure and 
evaluated adaptation strategies to mitigate heat hazards for three groups of vulnerable 
demographics as Figure 1 shows. 

2.1. HEAT-AGGREGATED AREAS IDENTIFYING 
We initially employed the “Global Moran's I Cluster and Outlier” method to figure 

out high-temperature points. This method relies on Tobler's First Law of Geography, 
which states that everything is related to everything else, but near things are more 
related than distant things. Thus, “spatial autocorrelation coefficient”, measured by the 
Global Moran's I method, considers the positions and attribute values of specific 
features. For this analysis, we utilized data of urban surface temperatures at 12 p.m. 
during typical heat events, derived from WRF-LCZ numerical simulations. These data 
served as the features, with the numerical values (TSK variable) at each grid point 
considered as feature attributes, and the grid point’s locations as feature positions. Then 
we calculated the global spatial autocorrelation coefficient in the study area to identify 
high-temperature points. This statistical process was conducted in ArcGIS Pro 3, with 
the following formula: 
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where 𝐼 represents the global spatial autocorrelation coefficient, 𝑧# represents the 
deviation of the attribute of feature 𝑖 from its mean (𝑥# − 𝑋), 𝑤#,& represents the 

Figure 1. Methodology Framework 
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spatial weight between features 𝑖 and 𝑗, 𝑛 represents the total number of fea-
tures, and 𝑆! represents the aggregation of all spatial weights. 𝐼 indicates 
stronger spatial positive correlation and clustered distributions of values when it 
is closer to 1. 

Subsequently, we evaluated the general trends of numerical attributes within the 
study area with the High/Low Clustering (Getis-Ord General G) tool. This tool 
revealed the features of spatial clustering and identified the surrounding relationships. 
To be specific, it identified significant clusters of high temperatures (HH, high values 
surrounded by high values) based on the urban surface temperature values obtained 
from the WRF simulation results. 

However, statistical errors and variations in surface heat island distributions may 
affect the results, as they contain noise and omit values (Wu et al., 2023). In addition, 
urban high-temperature areas, influenced by heat transfer between land parcels, should 
exhibit several relatively concentrated clusters. Therefore, we statistically figured out 
clusters with similar high-temperature phenomena by using a density-based clustering 
algorithm (DBSCAN). This statistical analysis was conducted using ArcGIS Pro 3, 
utilizing the high-temperature points clustered from the previous steps and employing 
flexible distance to separate clusters of different densities from sparse noise points. This 
statistical process outputs urban heat-aggregated areas based on high-temperature 
positions and values within the study area. 

2.2. HEAT COMFORT CALCULATION BY UTCI 
We assessed residents' thermal comfort by calculating the Universal Thermal 
Climate Index (UTCI) during extreme heat events. This is a widely used quanti-
tative indicator that takes into account physiological effects in hot environments. 
The UTCI value is calculated by the air temperature (°C), surface wind speed at 
10 meters (m/s), relative humidity (%), and mean radiant temperature (°C). The 
first three metrics can be obtained from WRF-LCZ simulation results directly or 
indirectly. The fourth metric, mean radiant temperature, can be quantified by 
calculating the total amount of solar radiation absorbed, and its formula is as fol-
lows: 

T*+, = ;
R

5.39 + 10-. + (237 + T)
/E
!.(1

− 273.15 
where 𝑇234 represents mean radiant temperature, 𝑅 represents total amount of 
solar radiation absorbed, 𝑇 represents the air temperature。 

Figure 2. Heat exchange process Figure 3. UCTI classifications 
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Subsequently, we calculated the UTCI values by pythermalcomfort package, which 
was built following the official definition of UTCI (Deng et al., 2023). This package 
simulates the complicated heat exchange between human body and external weather 
as Figure 2 shows, then outputs the UTCI value directly. Ultimately, the UTCI 
calculation values can be used to evaluate the degree of human comfort stress in 
specific climatic environments, and the corresponding relationships are detailed in 
Figure 3. In summary, the statistical process produced UTCI values and assessments 
for urban residents in different grids, involving multiple weather and environmental 
metrics.  

2.3. ADAPTATION CAPACITY QUANTIFYING BY ACCESSIBILITY TO 
MEDICAL SUPPORT 
We measured the adaptation capabilities of residents located in heat-aggregated 
areas by quantifying the accessibility of tertiary hospital emergency centers. Ac-
cording to the requirements for the Diagnosis and Treatment of Heat Stroke 
Emergencies, the success rate and prognosis quality of heatstroke patients are di-
rectly impacted by the diverse factors, such as the time, efficiency, and accuracy 
of emergency diagnosis and treatment, as well as the proficiency in treating sec-
ondary symptoms. Therefore, we conducted kernel density analysis on the loca-
tions and capabilities of tertiary hospital emergency centers to map the accessi-
bility of residents in different high-temperature areas during heat hazards. 

Kernel density analysis is a non-parametric method for estimating probability 
density based on Silverman's fourth-order kernel algorithm (1986). The predicted 
density for each regional location (𝑥, 𝑦)  in the study area is determined by the 
following formula: 
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where 𝑖 = 1,… , n represents each tertiary hospital emergency center, 𝑝!𝑝# repre-
sents the weight field value for point 𝑖 (using bed capacity of each hospital here 
to measure its emergency and treatment capabilities), and dist# represents the 
distance between point 𝑖 and the location(𝑥, 𝑦). The statistical output of this step 
described the distribution density of emergency centers regarding their locations 
and treatment capacities. 

2.4. HEAT EXPOSURE RISK CALCULATION 
We proposed the concept of “Heat Exposure Risk Index (HER)” to quantify the 
risk for specific populations in heat-aggregated areas at designated moments 
during heat exposure events. We utilized a Weighted Sum (Spatial Analyst) 
method to establish a multidimensional model that integrates key factors, includ-
ing moment, region, population, and adaptation capabilities, to conduct the cal-
culation. Firstly, we acquired the legitimate and anonymous mobile signal data 
from telecommunications operators, filtered out the demographic information of 
three vulnerable age groups: 55-59, 60-64, 65 and above (Zhu & Yuan, 2023) in 
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the heat-aggregated areas. Secondly, we calculated the population density of 
identified groups within each grid (150m*150m region). Finally, we developed 
the weighted sum model to calculate the individual heat exposure risk values for 
each age group within specific heat-aggregated areas. The model is based on the 
results of thermal comfort and adaptation capabilities. The formula is as follows, 

HER# =
𝑟 ⋅ 𝑤#&% ⋅ 𝑆# ⋅ 𝑤#&( ⋅ 𝑍# 	

𝑤#&5∑  6
#7

 

where HER# represents the heat exposure risk value at location 𝑖 during the ex-
treme hot moment, 𝑤#& represents the spatial weight between locations 𝑖 and 𝑗, 𝑟 
represents the risk coefficient for different age groups, 𝑍# 	represents the popula-
tion density for a specific age group at location 𝑖, 𝑆# represents the thermal com-
fort assessment at location 𝑖, ∑  6

#7  indicates the sum adaptation capacity. 

3. Case Study 
The main urban area of Nanjing was chosen as the study area for its typical extremely 
hot summers, urbanized development and high population density. Nanjing is located 
north of 30°N latitude and has a subtropical monsoon climate, with the temperatures 
peaking in summers up to 40˚C or more. The central six districts feature both higher 
building and population densities, divided into two parts by the Yangtze River to the 
northwest. For modeling and analysis, we chose the typical heat time on the hottest day, 
which was 12 p.m. on July 11, 2022 (local time). 

This research utilized WRF-LCZ numerical model to simulate the weather 
conditions precisely in the study area at that specific moment (Figure 4). The simulation 
results provided various metrics for subsequent quantification and analysis as Table 1 
shows. 

4. Results 

4.1. HEAT-AGGREGATED AREAS MAPPING 

Figure 4. WRF-LCZ simulation areas Table 1. Wrfout varaibles for analysis 

Figure 5. Temperature clusters Figure 6. 8 Heat-Aggregated Areas 
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We first identified clusters of high-temperature points (Figure 5) via temperature 
data obtained through numerical simulations. Then we extracted the grid points 
encompassed and utilized the DBSCAN statistical method to identify clusters of 
high-temperature aggregation, representing regions with more pronounced clus-
tering characteristics. In addition, we categorized them into 8 Heat-Aggregated 
Areas based on geographical distance and the characteristics of high-temperature 
clusters (Figure 6). 

4.2. HEAT COMFORT MAPPING 
We input the metrics of air temperature (˚C), wind speed at 10 meters (m/s), rel-
ative humidity (%), and mean radiant temperature (˚C) to Python to generate 
UTCI values for all grids in the study area. From this dataset, we extracted 
UTCI values and distribution for the previously identified 8 Heat-Aggregated 
Areas. The results reveal extensive "very strong heat stress" in most urban areas 
of Nanjing City during heatwaves, while “extreme heat stress” in Heat-Aggre-
gated Areas with UTCI values above 48 ((Figure 7). 

 

4.3. ADAPTATION CAPACITY MAPPING 
Taking the coordinates of tertiary hospitals’ outpatient departments and numbers 
of beds to quantify their emergency adaptation capacity during extreme heat 
events, we generated a density map of medical emergency services in the central 
urban area (Figure 8). The results described the distribution of medical support 
in the main urban area of Nanjing, particularly indicating stronger capability in 
the central six districts (primarily located within Heat-Aggregated Areas labeled 
as No. 4, 5, and 6 in this study). The accessibility decreased as the distance from 
these central areas increased. 

Figure 7. UTCI distributions 

Figure 8. Accessibility to tertiary hospitals’ outpatient departments 
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4.4. VULNERABLE DEMOGRAPHIC DENSITY MAPPING 
We mapped the population distribution at specific moments by leveraging mo-
bile signal data provided by telecommunication carriers. In this study, we pri-
marily utilized age-classification fields to analyze the locations and population 
density of vulnerable groups during the heatwave event as Figure 9 shows. The 
figure illustrated the distribution density of three age groups (55-59 years old, 
60-64 years old, 65 years old and above) at noon on July 11, 2022. It is evident 
that the elderly population density in the central and western regions (labeled as 
No. 4, 5, and 6 Heat-Aggregated Areas) is higher than that in the northeastern 
regions (labeled as No. 1, 2, and 3). This discrepancy reflects that the central six 
districts, characterized by early urbanization, possess a higher concentration of 
the elderly population. 

4.5. HEAT EXPOSURE RISK MAPPING AND CORRELATION 
We calculated heat exposure risk values and categorized the risk into 9 levels for 
each demographic group (see Figure 10) using the Weighted Sum (Spatial Ana-
lyst) method. The results show that the heat exposure risk values for the 55-59 
and 60-64 age groups are relatively similar, while the population aged 65 and 
above exhibits a 300% increase in high-risk values. However, it revealed a con-
sistent trend among different age groups after the reclassification method. 

Subsequently, we conducted a statistical analysis on the risk levels faced by three 
age groups (see Figure 11), showing that heat exposure risk was distributed similarly 
and UTCI values exceeded 45 consistently across the 8 Heat-Aggregated Areas. 
Moreover, the proportions of grids with high-risk grids (risk level=8 or 9) for all three 

Figure 9. Density of vulnerable groups (age 55-59, age 60-64, age 65+) 

Figure 10. HER of vulnerable groups (age 55-59, age 60-64, age 65+) 

Figure 11. HER levels in 8 Heat-Aggregated Areas (age 55-59, age 60-64, age 65+) 
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age groups are significantly higher in the Heat-Aggregated Area 2 and 3 compared to 
the other areas.  

5. Conclusions and Discussions 
This research focuses on assessing the health of urban residents in various areas 
during heatwaves. It specifically emphasizes the differentiated heat exposure 
risk levels in different heat-aggregated areas, as exhibited by built environment 
characteristics and demographic features. Utilizing the numerical data at noon 
during the 2022 extreme heat event, we selected the main urban area of Nanjing 
as the study area for its high temperature, targeting the elderly population as the 
subject for quantifying heat exposure risks. We used various quantitative meth-
ods to conduct a multidimensional assessment of individual risk, accounting key 
factors such as the quality of built environment, social characteristics, and medi-
cal support. 

Preliminary conclusions indicate that the overlap between high values of Universal 
Thermal Climate Index (UTCI) and heat-aggregated areas revealed an intensive 
increase in general heat exposure risks during heatwave events. In addition, the typical 
heat-aggregated areas exhibited the highest levels of risks, regardless of variations in 
geographical locations, medical resources, urban forms, and demographic 
characteristics. This suggests that issuing early heatwave warnings and enhancing 
disaster prevention knowledge are the most direct and crucial measures to reduce 
individual and public heat exposure risks. 

On the other hand, the differentiation in heat exposure risk levels among the 8 
typical heat-aggregated areas implied the inner disparate correlation between risk and 
temperature. It showed that the proportions of high-risk grids (risk level=8 or 9) in 
Heat-Aggregated Area 2 and 3 were significantly higher than in other regions. 
However, Area 2 and Area 3 are closely adjacent to Area 1, with similar medical 
accessibilities and capabilities; the residential density of the vulnerable demographics 
in Area 2 and Area 3 is similar to that in Area 1 as well. Therefore, it is reasonable to 
infer that the lower thermal comfort in certain grids led to significantly higher heat 
exposure risks in Area 2 and Area 3 compared to the surrounding areas. Furthermore, 
in the context of the similar overall temperatures in different heat-aggregated areas, the 
significant decrease in thermal comfort may be attributed to poor ventilation or higher 
relative humidity in specific blocks during heatwaves. This finding suggests effective 
solutions regarding other factors to lower the heat exposure risk, including urban form, 
architectural layouts, wind speed, and relative humidity in the built environment. 
Moreover, it is important to emphasize on the specific blocks and provide additional 
resources or support to mitigate heat exposure risks for specific demographical groups. 

In conclusion, this research has revealed the various heat exposure risks faced by 
urban residents in different heat-aggregated areas, highlighting their variations and 
correlations. However, the exploration only provides a preliminary understanding. 
Moving forward, it's evident that there are still research gaps that need to be addressed, 
particularly in delving deeper into the intricacies of these risks. For example, this 
research focused solely on the residential population at a specific moment, excluding a 
comparative analysis across multiple time frames and neglecting the exploration of 
heat exposure risks for residents during commuting and mobility. Future research 
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endeavors will pursue these in-depth investigations. Furthermore, the quantification 
and analysis of disaster prevention capabilities could benefit from the incorporation of 
more refined indicators. For example, the proportion and accessibility of parks and 
urban green spaces may lower the risk by enhancing the urban thermal comfort. 
Moreover, we will adopt broader and more targeted analytical approaches to model the 
calculations and investigate the correlations, contributing to scientifically robust and 
impactful conclusions. The findings regarding heat exposure risk will provide valuable 
insights for human environmental health, urban management, public resource 
coordination, and urban planning. 
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