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Abstract. Our research introduces an innovative methodology that 
employs smartphone imaging for measuring dimensions and utilizes 
deep learning to estimate carbon emissions associated with facade 
materials. The dimensions of various components of building exteriors 
are obtained through smartphone imaging, and a network model on a 
cloud server automatically segments these components in the images, 
calculating their respective areas. By combining user-input material 
specifications such as thickness and density， with standard values of 
material carbon coefficients, estimations for each component's material 
carbon footprint are derived. This approach offers the advantage of 
individual estimations for diverse materials, aiding in the design of low-
carbon facades. Additionally, it features a user-friendly interface 
enabling swift carbon estimation through portable devices. The method 
provides a convenient and efficient means for assessing carbon 
emissions in building facades, contributing to sustainable efforts and 
informed material selections for a greener future. 
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1. Introduction 
Life Cycle Assessment (LCA) considers the carbon emissions associated with 
materials' production, transportation, installation, and usage phases. It calculates the 
overall carbon footprint of entire building materials, including those used for the 
exterior appearance of buildings. While the façade constitutes a part of the architectural 
framework, distinct from the main structure and mechanical systems, its design plays 
a pivotal role in enhancing environmental conservation, energy efficiency, and 
sustainable development. For instance, the Double-Skin Façades (DSF) design aims to 
enhance a building's energy efficiency, reduce environmental impact, and promote 
energy conservation and sustainability. (Andrea Zani et al., 2021). By isolating external 
climate influences, improving thermal performance, and minimizing energy wastage, 
it balances indoor comfort and environmental friendliness (Sabrina Barbosa & 
Kenneth Ip,2014) (Baldinelli, 2009).  

However, improvement projects for façade in compliance with green building 
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standards often achieve energy-saving objectives without accounting for the carbon 
footprint generated by components enveloping the façade. This oversight might 
inadvertently harm environmental sustainability despite achieving energy-saving 
effects(Zahra S. Zomorodian & Mohammad Tahsildoost,2018). 

According to the Ministry of Environment in Taiwan's Voluntary Disclosure 
Review (VDR) report for sustainability from 2020 to 2022 released in 2023, there's a 
severe shortage of certified personnel in carbon footprint assessment, leading to 
numerous companies facing challenges in obtaining carbon footprint certifications. 
When considering ESG regulations, the carbon footprint of existing corporate office 
spaces, factories, and other buildings serves as a significant evaluation criterion for a 
company's compliance with ESG standards. There's an urgent need for a rapid and 
convenient assessment of building carbon emissions. 

In light of those issues, we are endeavoring to explore a path from the domain of 
computer vision. We aim to research a method capable of using smartphone imaging 
to capture real-world architecture, subsequently enabling the identification and 
quantitative assessment of visible exterior materials of buildings with different textures. 
The carbon footprint of a product can be calculated using methods such as direct 
monitoring instruments, energy and mass balance, or emission factors. However, 
within the construction industry, the emission factor method is commonly adopted. 
This method employs the fundamental formula: the carbon footprint of activity equals 
the activity data (mass/volume/kilowatt-hours/kilometers) multiplied by the emission 
factor (per unit of carbon dioxide equivalent). Mass equals volume multiplied by 
density; hence, once the volume and density of a material are known, its carbon 
footprint can be calculated. 

2. Methodology  
2.1. DEVELOPMENT PROCEDURE 

The development process of the entire system begins with smartphone imaging and 
measurement of building dimensions. The captured images and dimensional 
information are then transmitted to a cloud server. Within this cloud server, there are 
two integrated systems: one is a proprietary model that improves upon the Generative 
Adversarial Network (GAN)(Ian Goodfellow et al.,2014) using Pix2Pix(Phillip Isola 
et al.,2017) as a baseline. It incorporates self-attention and self-proliferation 
mechanisms to enhance feature weights, accomplishing the semantic segmentation 
task within the images, and enabling precise identification of building components in 
photos. The other system is an expert system composed of prior knowledge. It encodes 
different component material thicknesses, densities, and carbon emission coefficients 
into the program. Segmented image blocks are analyzed within this system to compute 
individual material areas, estimating their areas based on RGB pixel points. 

The user interface on the smartphone will display recognized building components, 
presenting a menu for users to select potential materials and specifications based on 
their professional construction experience, as illustrated in (Figure 1.). For instance, if 
the component is a window, the user can choose the possible thickness values for the 
glass. Then, the total area of the segmented and identified glass windows multiplied by 
the selected thickness provides the total volume. The cloud server matches the density 
and carbon emission coefficients of that material from the expert system, multiplying 
them accordingly, and transmits the results to the smartphone's user interface. The 
interface lists the estimated carbon emissions of various materials captured in the 
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smartphone's images of the facade, culminating in the final comprehensive data result.  
 

 

 

 

 

 

 

 

 

 
Figure 1. The technical development process diagram of our study. 

 
Our research focuses primarily on the part segmentation of the facade throughout 

the development process. The functionalities of smartphone imaging and measurement 
are already well-established, and various countries have established standard reference 
carbon coefficients for different building materials. Hence, our emphasis lies in the 
automatic identification of building exterior components, followed by the computation 
of component quality. Assuming precise measurements of component quality, the 
accuracy of carbon emission estimation would also improve. Therefore, within the 
entire development process, the precision of part segmentation stands as our paramount 
objective in machine learning.  

2.2. DATASET 

The process of semantic segmentation involves assigning each pixel in an image to its 
corresponding class label. The value of semantic understanding lies in providing 
explanatory categorization for meaningful objects in the real world. In contrast to object 
detection and recognition, semantic segmentation achieves pixel-level classification of 
images. However, current semantic understanding has not shown substantial 
development and progress in the tasks of component identification and segmentation 
in real-world object images. This implies that apart from leveraging large-scale image 
datasets with diverse labels such as ImageNet (Deng, Jia, et al.,2009), ShapeNet(Angel 
X.Chang et al.,2015), COCO (Tsung-Yi Lin et al.,2014), ADE20K(Bolei Zhou et 
al.,2017), etc., for the recognition and understanding of real-world objects, there's still 
limited inference regarding the finer constituents and functionalities of these objects. 

ImageNet, ShapeNet, COCO, ADE20K, and others are renowned large-scale 
datasets comprising over 200,000 images. However, in comparison to all the objects in 
the world, their image data for building exteriors is relatively limited. Moreover, part 
annotations for objects are absent in ImageNet, ShapeNet, COCO, and ADE20K. Our 
self-built dataset enhances the recognition of information regarding the exterior 

191



I. KAI FANG AND S. SHIH 
 

components of buildings. 
Firstly, we collected 500 photographs of building exteriors, forming what we call 

Raw Data. Next, we removed backgrounds and unnecessary obstructions from the 
building images, creating what we term Object Data(Figure 2). Subsequently, the 
components within the building exterior were categorized into ten main types: 
doorway, window, exposed beam, exposed column, exposed slab, projecting balcony 
slab, railing, eaves, decorative wall panel, and curtain wall. These ten types were 
manually annotated based on functional attributes, establishing what we refer to as 
Notation Data (Figure 2). 

Figure 2. RGB Setting, Object data samples and Notation data samples. 
 

The Façade dataset from UC Berkeley's official directory of Pix2Pix Datasets 
contains 506 photos of building façades alongside corresponding annotated images. 
However, aligning with our research objectives, capturing entire building façades 
conveniently with a mobile phone camera might not always be feasible due to 
perspective angles. Hence, the Façade dataset might not be entirely suitable for our 
machine-learning purposes. Moreover, the dataset lacks finer categorization for 
external building components. Additionally, the BuildingNet (Pratheba Selvaraju et 
al.,2021) dataset comprises 2,000 annotated architectural models, but it's a 3D model 
dataset, differing from our 2D real image data. The annotation methods also differ 
logically. Nonetheless, in the future, we could render BuildingNet's 3D architectural 
models into 2D images to expand our dataset. However, currently, we prefer using 
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actual images as our experimental foundation to approach real-world scenarios. 
Annotating real-world photos for component classification aims to enable our trained 
network models to be practically applied and achieve high precision in real-world 
scenarios. The genuine composition of real objects offers reliable volumetric forms for 
carbon footprint calculations.  
2.3. MODEL 

Once the components of a facade are accurately identified, estimating carbon emissions 
through the calculation of material coverage areas becomes feasible. This approach 
offers a rapid initial estimation for broad-scale carbon calculations. To achieve this 
goal, we propose a novel part segmentation model. Given Pix2Pix's room for 
improvement in accuracy regarding target details and boundaries, we introduced two 
techniques(Figure 3): self-proliferation(Yuan-Fu Yang & Min Sun,2021) and self-
attention(Ashish Vaswani et al.,2017). The self-proliferation aids in generating 
meaningful feature maps, while self-attention provides a more refined way to enhance 
features for improved precision in semantic understanding and part segmentation. 

Figure3. incorporated self-attention and self-augmentation mechanisms into our baseline model. 
 

Image segmentation requires positional information for each pixel. It demands full-
resolution semantic estimation, making it impossible to reduce computational 
complexity using pooling or dilated convolution networks as in classification tasks. 
Therefore, we adopted an encoder-decoder model structure. In the Pix2Pix framework, 
the encoder part utilizes downsampling to reduce spatial resolution, generating low-
resolution feature maps. We employed an embedded attention mechanism to alleviate 
the limitations of pooling. Furthermore, the self-expansion mechanism is an extension 
derived from MobileNet(Andrew G. Howard et al.,2017), a lightweight network 
structure based on depth-wise separable convolutions. We embedded it into the 
encoder to achieve low power consumption and enhanced speed. 

Pix2Pix, developed in 2014, emerged from the Conditional Generative Adversarial 
Network (CGAN)( Mehdi Mirza & Simon Osindero. 2014.), specifically designed for 
image translation tasks. CGAN extends the basic GAN, enabling the generation of 
images that satisfy specific conditions or features, facilitating the transformation from 
patterns to images. Despite being an older development, Pix2Pix remains powerful in 
its image-to-image tasks and even exhibits faster output generation compared to the 
current prevalent Diffusion models. For large-scale estimations of carbon emissions 
based on building exteriors, the focus is on approximate calculations, eliminating the 
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need for excessive granularity in image quality. The emphasis lies in the immediate 
availability of information through mobile devices for real-time estimation of building 
carbon footprints, prioritizing rapid results. Hence, we chose Pix2Pix as the baseline 
model for development. 

In addition to integrating the generator and decoder based on these foundational 
principles, this model architecture also incorporates the concept of U-Net 
(Ronneberger, O. et al.,2015).This involves establishing skip connections between 
multiple levels in the encoder and decoder to address information loss and resolution 
reduction issues in semantic segmentation tasks. Conventional encoder-decoder 
structures, due to repetitive downsampling and upsampling operations, tend to reduce 
resolution gradually, potentially leading to the loss of fine features. Skip connections 
allow rich semantic information transfer from low-level to high-level feature maps into 
the decoder, preserving more details while maintaining high resolution. By integrating 
CGAN's ability to conditionally generate meaningful feature maps, combining 
PatchGAN's (Phillip Isola et al.,2017) detailed discriminator, and incorporating U-
Net's method for retaining fine features at high resolutions, Pix2Pix demonstrates 
flexibility and robust performance in various image-to-image translation tasks. These 
include both image-to-image and image-to-label transformation tasks. 

Our network model is based on the Pix2Pix generative adversarial architecture, 
enhancing feature quality through improvements in the generator. Firstly, the model 
utilizes a series of linear transformations to generate additional feature maps with lower 
computational costs. This segment incorporates a self-augmentation mechanism. 
Subsequently, it captures the long-term dependencies of feature maps through self-
attention mechanisms in both channel and spatial domains. Our model consists of a 
seven-layer Convolutional Neural Network (CNN)(Figure 4). As data passes through 
each layer of the CNN, the model duplicates the same number of feature maps and 
incorporates them into the self-attention mechanism, where the generated feature maps, 
processed through softmax, are added back to the original data. 

Figure 4. This diagram shows the size of feature maps and the number of filters in each layer of 
encoder and decoder. 

 

3. Experiment  
In the training process of machine learning, we continually adjusted several 
hyperparameters, including epoch, batch size, and learning rate. To achieve better 
computational efficiency, convergence, and prevent overfitting, we settled on setting 
50 epochs for the model to train on different parts of the dataset each time. Additionally, 
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we fixed the Batch Size at 75, meaning that during each training step, the model 
randomly selects 75 images from the training data as a batch for gradient computation 
and weight updates. The gradients of the model's weights are calculated based on the 
loss function of these 75 images, and the model's weights are updated accordingly. 
Throughout our training process, both the generator and discriminator had a learning 
rate of 0.0002. We utilized the Adam optimizer and set the loss weight for the generator 
and discriminator to 0.5. For hardware specifications, we employed a TESLA T4 16G 
GPU and conducted the training using Keras. 

About the evaluation metric, we utilized PSNR (Peak Signal-to-Noise Ratio) in our 
part segmentation experiments. A higher PSNR value indicates greater similarity 
between images, suggesting lower distortion. PSNR measures the ratio between the 
maximum possible power of a signal and the power of noise that affects its accuracy. 
In the context of images, PSNR offers a relatively objective and quantifiable means of 
assessing image distortion. This allows for a more comprehensive evaluation of the 
quality of our segmentation results. 

 

 
Figure 5. Segmented images selected at different training epochs in the recognition network. 

 
 

We partitioned the data into training and testing sets with a ratio of 9:1. We 
evaluated the impact of different epoch counts on model improvement. As shown in 
(Figure 5), the results of part segmentation become increasingly similar to the expected 
values with more training epochs. Our model exhibits better PSNR values at 50 epochs, 
indicating its significant capability in the task of part segmentation. 

In addition to training the machine using datasets, we conducted real-time tests on 
ongoing construction projects. After capturing the exterior of the buildings, we input 
the images into our self-developed convolutional neural network model. The 
automatically segmented results are illustrated in (Figure 6). We verified the results 
using a pixel-based comparison method, where the total sum of similar-colored pixels 
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represents the area of the component. In this case, the pixel comparison error rates for 
the main building's exterior walls and metal curtain walls were below 10% (Table 1). 
For windows and railings, the pixel comparison error rates were below 30% (Table 1). 
This suggests that when calculating areas based on pixel counts, the segmentation 
results closely approximate the actual component areas. 

 
 

 
Figure 6. Mobile photography of an ongoing construction site and its generation result of 

part segmentation. 
 
 

 
Table 1. We conducted a pixel-based analysis by comparing the segmented results from 

Figure 6. with the expected values to assess the error rates in pixel estimation. Pixel-based 
calculations provide estimations of areas, allowing us to compare them with actual area 

measurements. 

4. Result & Discussion 
4.1. PIXEL COUNTING VS. PSNR. 

The task of our segmentation model is to accurately identify and delineate architectural 
components. The best performance of our component segmentation model in terms of 
PSNR values ranges between an average of 18-20. While not exceptionally high, the 
precision in comparison between detected RGB pixel values and actual color block 
areas is high. Consequently, from such experimental results, we observe that the precise 
shape of the color block segmentation isn't as crucial. What matters more to us is the 
area covered by these color blocks. If the overall area approximation tends towards 
reality, the area calculation becomes more realistic. Hence, in pursuit of automatically 
deriving areas through segmentation, the error rate in RGB pixel estimation holds 
higher importance and reference value compared to the distortion rate evaluated 
through PSNR between images. 
4.2. DATASET REVIEW 

During our research, we identified lower recognition rates for certain architectural 
components, such as the eaves. This is primarily due to the limited representation of 
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eaves data in our training dataset, resulting in what is known as an 'Imbalanced Dataset.' 
This refers to a significant disparity in the number of samples across different 
categories in the dataset, impacting the model's performance in predicting and 
classifying minority categories. Additionally, in semantic understanding, the definition 
of eaves might be multifaceted. Therefore, in labeling, we might need further 
delineation regarding forms and functions, such as styled eaves, shading eaves, and 
traditional sloping roof eaves, among others. 

 
4.3. COMPARISON OF DATASETS 

The Façade dataset from UC Berkeley consists entirely of Western traditional 
architectural facade photos, all limited to buildings with seven floors or less. These 
images exhibit a higher degree of order in façade design, making it relatively easier for 
the model to discern various components. In contrast, our dataset emphasizes the 
collection of photographs from modern architectural settings, where there's more 
design variation and a combination of diverse materials in components. This diversity 
presents considerable ambiguity in defining components, posing a significant 
challenge for model training. However, it is precisely for this reason that we need to 
gather a vast amount of data from modern architectural contexts to meet the current 
demand. 

5. Conclusion & Future Work 
Overall, our research provides a rapid and convenient way to perform preliminary 
assessments of carbon emissions in physical constructions: (1). It offers an initial 
estimation of the total carbon emissions from façade components made of composite 
materials, allowing a deeper understanding of an object's environmental impact. (2). It 
enables architects designing architectural exteriors to improve and optimize designs 
with a lower carbon footprint, encouraging sustainable practices. (3). It provides a 
highly convenient method where, through the camera and measurement functions on a 
mobile phone, one can upload data to a cloud server for computation and then transfer 
results back to the phone, enabling assessments of component material carbon 
emissions, addressing the shortage of experts in carbon footprint assessment. 

The focus of our paper lies in our precise calculation of the area of architectural 
exterior components to obtain the material quantity necessary for carbon footprint 
calculations. Future research aims not only to enhance the segmentation model's 
accuracy but also to develop a complete system focusing on expert systems and user 
interfaces, facilitating practical industrial applications. 
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