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Abstract. Building Information Modelling (BIM) data provides an 
abundant source with hierarchical and detailed information on 
architectural elements. Nevertheless, transforming BIM data into an 
understandable format for AI to learn and generate controllable and 
detailed three-dimensional (3D) models remains a significant research 
challenge. This paper explores an encoding approach for converting 
BIM data into graph-structured data for AI to learn 3D models, which 
we define as Graph-BIM encoding. We employ the graph 
reconstruction capabilities of a Variational Graph Autoencoder 
(VGAE) for the unsupervised learning of BIM data to identify a suitable 
encoding method. VGAE's graph generation capabilities also reason for 
spatial layouts. Results demonstrate that VGAE can reconstruct BIM 
3D models with high accuracy, and can reason the entire spatial layout 
from partial layout information detailed with architectural components. 
The primary contribution of this research is to provide a novel encoding 
approach for bridging AI and BIM encoding. The Graph-BIM encoding 
method enables low-cost, self-supervised learning of diverse BIM data, 
capable of learning and understanding the complex relationships 
between architectural elements. Graph-BIM provides foundational 
encoding for training general-purpose AI models for 3D generation. 

Keywords.  BIM, Graph-Structured, Encoding Method, VGAE, Graph 
Reconstruction and Generation 

1. Introduction 

The current challenges in AI learning of 3D models stem from a lack of high-quality 
3D datasets and the complexities of encoding 3D models to capture spatial layout 
features. Building Information Modelling (BIM) provides an abundant source, 
including 3D scanning and design and construction data. BIM encompasses detailed 
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and hierarchical information on architectural elements, such as geometric data, spatial 
relationships, and material properties. Nevertheless, transforming BIM data into an 
understandable format for AI to generate controllable and detailed 3D models remains 
a significant research challenge(Bassir et al., 2023). 

Encoding refers to transforming raw data into a format suitable for processing and 
learning by deep learning models. In this paper, the encoding method we discuss 
involves converting three-dimensional architectural models into data for AI learning. 
Typical methods of 3D model representation such as point clouds, voxels, and neural 
fields, can be encoded to facilitate AI learning(Tang et al., 2022; Zhong et al., 2023; 
Mildenhall et al., 2022). These methods primarily focus on the spatial attributes of 
individual elements but struggle to learn the interrelationships between elements within 
spatial layouts and face challenges in complex architectural spatial arrangements 
(Zhong et al., 2023). 

We propose an encoding approach that transforms BIM data into graph-structured 
data for AI to learn 3D models, referencing encoding based on graph representation to 
align with the data structure of the BIM model, which we define as Graph-BIM. Graph-
structured data, comprised of nodes and edges, serve to represent relationships between 
entities (Xu et al., 2018). Concurrently, BIM data includes detailed information about 
each architectural element, such as walls, doors, and windows, and spatial relationships 
between these elements. These two data structures exhibit inherent compatibility. In 
applying BIM data to graph-structured data, architectural elements are encoded as 
nodes. The physical connections, spatial relationships, or functional dependencies 
among these components are conceptualized as edge. This graph-structured data 
enables AI to capture the details of each architectural element and to articulate the 
interrelationships between these elements and the spatial layout. Recent studies have 
demonstrated the potential of graph-structured encoding methods in learning 
architectural 3D spatial layouts (Nauata et al., 2020; Zhong et al., 2023). However, they 
are beset with two principal issues. Firstly, encoding approaches from the 
aforementioned studies are constrained in the diversity of learnable data types, with 
irregular architectural spatial layouts posing significant challenges to learning. 
Secondly, these encoding methods predominantly rely on room function bubble 
diagrams or space voxels, limiting their direct control and generation capabilities for 
architectural components such as columns and walls. In contrast, Graph-BIM 
facilitates AI's comprehension and learning of multiple types of BIM data and 
reconstructs and generates precise, controllable detailed BIM models. To validate the 
feasibility of the Graph-BIM, we select the Variational Graph Auto-Encoders (VGAE)  
within the Graph Neural Networks (GNNs) framework for the experiment. 

GNNs lie in their capability to process graph-structured data, effectively learning 
the intricate relationships among nodes(Xu et al., 2018). For instance, tools such as 
shear wall analysis tools have demonstrated the capability of GNNs to learn graph-
structured data and reason spatial layouts (Zhao et al., 2023). However, GNNs in the 
aforementioned studies require extensive labelling of data during training. To facilitate 
more efficient learning of BIM data, we select the VGAE model. Comprising an 
encoder and decoder, VGAE facilitates self-supervised learning of BIM data,  
capturing the nodes' complex features and their topological interrelations within the 
graph, thereby generating a new graph (Kipf & Welling, 2016). Recent studies have 
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demonstrated the successful application of VGAE in graphically representing 
molecular structures, enabling prediction edge generation and edge attributes and 
generating novel molecular structures (Bresson & Laurent, 2019). This suggests that 
VGAE also has the potential to learn BIM models represented as graph-structured data, 
understanding the relative spatial relationships between different architectural 
components. Therefore, we aim to explore suitable Graph-BIM encoding methods and 
predict building layouts by assessing the accuracy of spatial reconstructions by VGAE. 
Figure 1 illustrates the overall application process of Graph-BIM and the employed 
VGAE model, where users obtain detailed Revit models by inputting building outlines 
and inner control points. 

Figure 1. User Interface for 3D Layout Generation Using Graph-BIM and Employed VGAE 

The principal contribution of the Graph-BIM encoding approach is to bridge AI 
and BIM. It empowers AI with the ability to self-supervise efficiently in the learning 
of BIM data features, facilitating cost-effective learning across multiple types of BIM-
3D datasets. Graph-BIM encoding enables AI to grasp the relationship between 
architectural elements and to generate detailed 3D models. 

2. Related Work 

Nauata et al. (2020) develop House-gan, a system for generating housing layouts that 
comply with graph constraints. In House-gan, rooms are represented as nodes and their 
adjacencies are depicted as edges in the graph structure. Its abstraction oversimplifies 
the representation of detailed architectural elements such as columns, walls, and 
windows. Building-GNN encodes model voxels as nodes and their spatial 
interrelations as edges, allowing for precise spatial semantics control at the voxel 
level(Zhong et al., 2023). However, it faces challenges in learning irregular 
architectural layouts and generating architectural components within the voxel space. 
A GNNs-based method for shear wall layout prediction encodes structural elements 
like walls and windows as edges, with nodes representing component 
intersections(Zhao et al., 2023). This approach accurately predicts shear wall layouts, 
demonstrating the potential for architectural element control and prediction. 
Nevertheless, it primarily focuses on shear wall attributes, not encompassing the 
prediction of the overall spatial layout. The limitations in these studies in detailing 
architectural features, learning data types, and reason overall spatial layouts led to the 
development of the Graph-BIM encoding approach. Our method encodes architectural 
components such as columns and walls as graph nodes and edges, assigning them 
coordinates and specific positional attributes relative to the entire layout. Furthermore, 
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to understand relationships among architectural elements, we propose incorporating 
room function connections as special attributes within our encoding framework. 

Simonovsky and Komodakis (2018) demonstrate the use of GraphVae to output a 
predefined probabilistic fully connected graph in a single step using the decoder. By 
setting probability thresholds, it controls the likelihood of the existence of nodes and 
edges, thereby generating molecular graphs. This inspires us to test multiple threshold 
values to retain more complete reconstructed results of spatial layouts. The research of 
Permutation-Invariant Variational Autoencoder focuses on graph-level representation 
learning, introducing a novel model that addresses the graph reordering conundrum, 
and illustrating the management of node sequence uncertainty within graph 
structures(Winter et al., 2021). This provides specific technical guidance for handling 
the node sequence in various architectural layouts using VGAE. Shi et al. (2020) 
introduce a masking label prediction strategy in training the Message Passing Model, 
which involves randomly masking a certain proportion of input label information 
before making predictions. This inspires us to hide parts of the spatial layout 
information to reason the overall space, testing whether the Graph-BIM encoding 
allows the VGAE model to accurately learn the spatial features. Given these theoretical 
explorations and practical applications, we resolve to utilize the VGAE model's graph 
reconstruction capabilities to test suitable Graph-BIM encoding methods, while also 
exploring the potential of the VGAE model for reasoning architectural spatial layouts 
using Graph-BIM encoding BIM data. 

Our research aims are to employ the VGAE model for reconstructing architectural 
spatial layouts and test appropriate Graph-BIM encoding methods, and to utilise 
VGAE 's graph generation capabilities to infer comprehensive architectural spatial 
layouts from localized information and generate new architectural spatial layouts. 

3. Methodology 

The Graph-BIM encoding experiment workflow is shown in Figure 2. 

Figure 2.  Workflow of  Graph-BIM Encoding and VGAE Experiment 
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3.1. ENCODING METHOD  

We encoded the endpoints of walls as nodes and non-overlapping columns were also 
encoded as nodes, with node features including spatial location and environmental 
information(Nauata et al., 2020; Zhao et al., 2023; Zhong et al., 2023). Walls were 
encoded as edges, with edge attributes representing wall types. We combined these 
three encoding methods and validated them using the VGAE model(Figure 3). 

Figure 3. Encoding Methods 

3.2. DATA PROCESSING 

In this experiment, we utilized two datasets: the House-gan-MainEntrance (House-gan 
-ME) dataset and the Tree-Grid dataset(Figure 4). The House-gan -ME dataset was 
chosen for its variety in node numbers and irregular shapes, satisfying the requirements 
for datasets with diverse node quantities and non-uniform forms(Nauata et al., 2020). 
In addition to columns and wall endpoints, the Tree-Grid dataset included nodes 
representing environmental information. This approach facilitated the verification of 
the Graph-BIM encoding's accuracy in data format transformation for BIM data, 
unrestricted by the number of data nodes, node types, and layout shapes. We obtained 
BIM data through Revit to simulate the real workflow of AI learning BIM models. 

Figure 4. Dataset for VGAE Training 
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3.3. GRAPH RECONSTRUCTION AND GENERATION USING VGAE 

Initially, the VGAE model underwent self-supervised graph reconstruction training. 
The output, consisting of the reconstructed adjacency matrix (positions of edges) and 
edge attributes, was compared with the original data's adjacency matrix and edge 
attributes to calculate the loss(Figure 5(a)). We conducted experiments with three 
different encoder models on three encoding methods to test suitable Graph-BIM 
encoding approaches. Then, we used this Graph-BIM encoding method to train the 
VGAE model's spatial reasoning capabilities. We concealed some of the walls(Edges) 
in datasets, retaining only the outermost walls of the building. The VGAE model 
outputted building layouts, which were compared with complete datasets for loss 
calculation(Figure 5(b)). Finally, we verified the capability to generate new layouts 
based on the Graph-BIM encoding. By using the VGAE to reconstruct different spatial 
layout feature vectors and linearly combining them in various proportions to create new 
feature vectors, the VGAE decoded these vectors into adjacency matrices and edge 
attributes. This generated result contained layout features proportionate to those in the 
original architectural space, as represented by the feature vectors. 

Figure 5. VGAE Graph Reconstruction and Generation 

4. Result 

4.1. RESULTS OF AD-GAN GENERATION AND DESIGN DECISIONS  

The experimental results indicated that the VGAE model using Encoding Method 3 
exhibits the best reconstruction capability. In the TransformerGCN model, the 
reconstructed wall positions and categories were almost identical to the original data. 
Observing the loss on the test set, Encoding Method 3 demonstrated the lowest 
reconstruction loss of spatial layouts across all three encoder models, with an average 
loss on the test set shown in Figure 6 being 0.098. This suggested that Encoding 
Method 3 enabled the VGAE to accurately learn the relationships between architectural 
components and spatial layouts. The reconstruction results of Encoding Method 2 were 
the least effective, either generating many irrelevant diagonal walls or missing most 
wall information. In the GINE model experiment, the reconstruction loss on the test set 
was as high as 0.756. This implied that relying solely on environmental information 
encoding was insufficient for effectively learning the finer details in BIM data. The 
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reconstruction loss of Encoding Method 1 was close to that of Encoding Method 3, 
capable of reconstructing wall layouts and categories more completely. In the 
TransformerGCN experiment, the reconstruction loss decreased to 0.184, with only a 
minimal number of walls missing. In the GINE model experiment, the reconstructed 
spatial layout was missing some wall information, with a reconstruction loss of 0.574. 
This indicated that spatial information played an important role in encoding methods, 
but environmental information was still necessary to learn local features. Specific 
encoding contents on the Tree-Grid and House-gan-ME datasets were presented in 
Figure 7. 

Figure 6. Graph Reconstruction Results for Testing Encoding Method 
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Figure 7. Graph-BIM Encoding Details 

4.2. REASONING SPATIAL LAYOUT RESULTS 

Figure 8 illustrated that the VGAE model employing the Graph-BIM encoding method 
was capable of reasoning complete spatial layout results on the test dataset based on 
partial layout information, and the spatial layouts satisfactorily met environmental 
constraints. The positions and categories of walls closely resembled the original spatial 
layout. The walls corresponding to door plates were precisely those of the main 
entrance category, with the lowest loss compared to the original at 0.067 (Figure 8(a)). 
Figure 8(d) demonstrated that both the external balconies and internal courtyards in the 
layout corresponded well with trees, with a reconstruction loss of 0.0743. Although 
some walls were lost in Figures 8(e) and (f), the impact on the overall spatial layout 
was not significant. The results substantiated the generalization capability of the Graph-
BIM and VGAE could accurately generate spatial layouts that complied with 
environmental constraints for both regular and irregular spatial arrangements. 

4.3. NEW LAYOUTS GENERATION RESULTS 

Figure 9 showed the new layouts generated by concatenating feature vectors of 
different layouts. At a specific vector ratio of 0.3:0.7, the architectural layout tended 
more toward the feature2 layout, reducing a wall and forming a longitudinal spatial 
layout(Figure 9(a)). At a 0.5:0.5 ratio, the new spatial layout embodied the spatial 
characteristics of both original schemes, featuring both horizontal and longitudinal wall 
layouts, as depicted in Figure 9(b). When the ratio is 0.7:0.3(Figure 9(c)), the layout 
features leaned more towards feature 1, with an additional wall generated at the bottom 
of the space due to the influence of feature 2, yet the overall layout remained 
predominantly horizontal. The experimental results demonstrated that VGAE was 
capable of generating new building layouts from the combination of different feature 
vectors. This contributed to data sample augmentation and promoted diversity in the 
design. 
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 Figure 8. Graph Generation Results of Reasoning Building Layout 

Figure 9. New Building Layouts Generation by Combining Feature Vectors 

4.4. LIMITATION 

The datasets primarily consist of spatial layouts formed by walls and columns. To 
enhance AI's performance in learning layouts, it is advisable to incorporate a wider 
range of architectural components, such as windows, doors, and furniture, into the 
Graph-BIM encoding method. This expansion aims to facilitate the learning and 
generation of more comprehensive 3D models. During the experiments, we employed 
three types of graph convolutional networks, which effectively aggregate node 
information. However, the integration of edge attributes into node features was 
suboptimal. A neural network model capable of precisely aggregating edge attributes 
and node features would be instrumental in deepening the machine's understanding of 
spatial layouts. Currently, in the graph generation phase, we only reconstructed the 
adjacency matrix and edge attributes of the dataset, predicting walls based on the 
original graph's nodes. We will train AI to develop the capability to generate nodes, 
enabling it to infer and generate overall spatial layouts with minimal information. 

5. Conclusion 

This paper explores a Graph-BIM encoding approach for converting BIM data into 
graph-structured data for AI training. The main contribution is to provide a bridge 
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between AI and BIM encoding, enabling self-supervised learning of BIM data, 
allowing AI to learn multiple types of BIM datasets at a low cost and surpassing 
previous encoding methods in understanding the complex relationships between 
architectural elements and generating detailed 3D models. Our work is beneficial for 
training general-purpose AI models for 3D generation. Utilizing the Graph-BIM, 
architects can input outlines and interior control points to generate detailed models in 
Revit. Future developments may enable the training of a universal AI agent capable of 
addressing design requirements through the Graph-BIM. This offers a paradigm of 
end-to-end human-machine collaborative design for both architects and machines.  
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