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Abstract. Recent studies have utilized Generative Adversarial 
Networks (GANs) to learn from existing urban layouts for urban design 
tasks. We define these GANs as Urban-GAN. However, urban layouts 
generated by Urban-GAN lack specificity and often require multiple 
modifications by architects to meet specific design requirements, 
making the process inefficient and non-customizable. Inspired by the 
concept of fine-tuning language models, we propose a stacked GAN 
model framework that fine-tunes Urban-GAN using data generated by 
architects in solving specific design tasks, forming AD-Urban-GAN. 
Our results indicate that layouts produced by AD-Urban-GAN more 
effectively emulate architects' design morphology decisions, enhancing 
Urban-GAN’s adaptability and efficiency in handling design tasks. 
Furthermore, AD-Urban-GAN enhances the customizability of Urban-
GAN models for specific urban design tasks, generating layouts that 
accurately understand and meet the requirements of specific tasks. AD-
Urban-GAN significantly streamlines the process of generating design 
prototypes for specific task types, enabling precise quantitative control 
over urban layout results. This workflow establishes a data acquisition 
and training loop that strengthens the customizability of existing GANs. 
The design decision data generated by architects can improve the 
adaptability and customization of GANs models, facilitating efficient 
collaborative work between architects and artificial intelligence. 

Keywords.  Architect Design Decisions, Fine-tuning, GANs, Stack- 
GANs, Adaptability, Customizability 

1. Introduction 

Generative Adversarial Networks (GANs) is a generative model that consists of a 
discriminator and a generator, with the generator generating realistic data and the 
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discriminator distinguishing as accurately as possible between generated and real data 
(Goodfellow et al. 2020). In architectural design for plan layout and elevation design, 
GANs become an important generative tool (Chaillou,2020). Recent studies have 
leveraged GANs to learn from existing urban layout schemes for addressing urban 
design tasks (Shen et al., 2020; Tian, 2021). We define these GANs as Urban-GAN. 
Tools like Urban-GANs, while capable of simulating urban layouts similar to historical 
datasets, include conditional GANs that allow architects to input site constraints and 
interactively control the generation of urban layouts. Despite this, architects still require 
extensive interaction and exploration to finalize plans based on complex site constraints 
and implicit conditions (Li et al., 2020).  

Urban layouts generated by Urban-GAN lack specificity and often require multiple 
revisions by architects to meet specific design needs, a process that is both inefficient 
and non-customizable. For instance, Zhong et al. (2022) implementation of Urban-
GAN still exhibits considerable randomness in the generated forms, necessitating the 
input of numerous conditional constraints by architects to control GAN outcomes and 
ensure the rationality and customization of design requirements. This is because Urban-
GAN models often lack a clear mechanism for deeply understanding and adapting to 
complex design sites. In contrast, architects, when addressing particular design tasks, 
are capable of extracting key features from on-site information, thereby creating 
solutions that are not only highly adaptive but also personalized and rational in form. 
In the realm of urban design, the decision-making process employed by architects in 
generating design solutions surpasses the current capabilities of machine-generated 
decisions. (Davies et al., 2021).  

The concept of fine-tuning has recently been extensively employed to train general-
purpose language models for specific tasks, which, compared to general models, 
enables more efficient and precise solutions to certain types of problems (Sun et al., 
2019). Inspired by this concept of fine-tuning, and seeking to combine the advantages 
of artificial intelligence with human decision-making (Davies et al., 2021), we aim to 
utilize data from the interactions between architects and GANs for training AI. This 
approach is intended to enhance the capability of Urban-GAN to generate layouts that 
simulate human architect design decisions, thereby obtaining a more customized and 
adaptive GAN model. 

Stack-GAN is a framework that employs a stacked approach to GANs. It comprises 
two GANs: the first captures basic features of the data, whose output is then fine-tuned 
by the second GAN, using it as its input (Zhang et al., 2017). This inspires us to train a 
GAN using actual data generated by architects while handling specific design 
tasks(AD-GAN), and then stack it with the Urban-GAN model. This combination 
forms a GAN that not only learns historical layout features but also simulates rational 
morphology control by human architects(AD-Urban-GAN), as shown in Figure 1. To 
integrate multiple architects' design decisions into a single design task, we also employ 
Principal Component Analysis (PCA), a data dimensionality reduction and feature 
extraction technique. PCA represents data with fewer dimensions while retaining as 
much of the original data's information as possible, integrating common features from 
multiple datasets (Wold, S, 1987). This helps us extract important common features 
from a vast array of architects' design decision characteristics, further enhancing the 
adaptability and customization capabilities of AD-Urban-GAN. 
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We propose the AD-Urban-GAN framework, a combination of AD-GAN and 
Urban-GAN. Compared to Urban-GAN, AD-Urban-GAN can more closely emulate 
the architect design morphology decisions, reducing the frequency of modifications 
required by architects on Urban-GAN-generated results, and thereby increasing the 
efficiency of architects in handling design tasks. Additionally, the layout forms 
produced by AD-Urban-GAN are more controllable and closely align with the 
quantitative design metrics of specific design tasks. This enhances the customization 
capabilities of the URBAN-GAN model, enabling the generated layouts to more 
accurately understand and respond to the design requirements of specific tasks. 

Figure 1. User Interface for Urban Layouts Generation Using Employed AD-Urban-GAN 

2. Related Work 

Tian (2021)employs conditional GANs to learn the multiple constraints of a site from 
historical urban layout data, allowing architects to generate layouts by controlling 
labels. However, due to the limitations of the label information, precise control over 
the architectural layout within boundaries is unachievable. Zhong et al.(2022) enhance 
the control over GAN-generated layouts by using hierarchical urban features as data 
labels, allowing architects to interactively control labels and customize the generation 
of three-dimensional urban layouts. Nonetheless, these data labels, derived from past 
historical case data, make it challenging to meet the current site's constraints with label-
controlled results. Architects still need to understand the site conditions and 
continuously input labels to control GANs. We aim for GANs to truly simulate 
architects' design decisions, enhancing the design efficiency and customization 
capabilities of the GAN model.  

Stack-GAN generates high-resolution, realistic images from textual descriptions, 
whereas the first GAN produces low-resolution images with basic shapes and colours, 
and the second GAN utilizes these low-resolution images and text descriptions to 
generate high-resolution images with realistic details (Zhang et al., 2017). Stack-GAN 
establishes a hierarchical structure between the two stages of generators and 
discriminators, using conditional augmentation techniques to ensure that the final 
generated images meet the design requirements. This method inspired us to stack AD-
GAN and Urban-GAN models, inserting architectural design decision constraints into 
the hierarchical structure to fine-tune urban layout generation results. Concurrently, we 
use PCA to extract common features of multiple architects' design decisions to train 
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ADGAN, better simulating architects' design strategies.  Härkönen et al. (2020) use 
PCA to identify key attribute variations in facial feature components, demonstrating its 
effectiveness in identifying important features in data. Additionally, Koh (2019) 
utilized PCA to extract spatial layout features of multiple churches, and then generate 
new floor plans by piecing together various church space features in different 
proportions. These examples demonstrate the potential of PCA in extracting and 
reassembling complex design features, particularly showcasing its robust capability 
when dealing with diversified and high-dimensional data, allowing us to process large 
datasets from architects for feature mining and labeling. 

The primary experimental objectives of this paper are: To demonstrate that the AD-
GAN, trained with actual architectural design decision data and stacked with Urban-
GAN, can simulate architects' design decisions for specific design tasks. To show that 
layouts generated by AD-Urban-GAN are more precise and controllable, meeting the 
design metrics of specific design tasks. 

3. AD-URBAN-GAN Framework 

The AD-Urban-GAN framework is illustrated in Figure 2. 

Figure 2. AD-Urban-GAN Workflow 

3.1. URBAN-GAN FRAMEWORK 

We adopted Zhong's GAN model as the foundational Urban-GAN model for our 
research, specifically, the input was morphological colour coding (MCC) and the 
output was a 3D volume with different functions (Zhong et al. 2022). The MCC 
contained RGB (Fig 3). We obtained 4000 pairs of image data from OSM,  which  

Figure 3. Urban-GAN for Learning Historical Case Data 
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included site boundaries, building heights, and functional classification information. 
The results of Urban-GAN were transferred to 3D models by decoding the MCC map. 
The accuracy of this approach has been demonstrated in previous work (Tian, 2021). 
The architect used different inputs of morphological decision colour maps to complete 
the simulation of the layout task. 

3.2. ARCHITECT DESIGN DECISIONS DATA FOR  AD-GAN TRAINING 

To collect a dataset based on customized design tasks, we asked architects to draw 
design decision diagrams online, as shown in Figure 4(b)(c). Architects could refer to 
layouts generated by Urban-GAN to design forms that met the morphological metrics 
required by different tasks, as illustrated in Figures 4(a)(d)(e). We recorded the 
morphological metrics of the design decision diagrams learned by Urban-GAN, the 
morphological metrics annotated by architects, and the morphological metrics that 
needed to be met by the design task. 

Figure 4. Architect Design Decisions Data for Specific Tasks  

Figure 5 shows architects' design layouts under all task types from 85 professional 
architects and students from an architecture university in China, with a total of 1800 
valid solutions obtained and used to train the AD-GAN model, and 480 cases used for 
the test dataset. 

Figure 5. Dataset for Different Tasks 

3.3. PCA EXTRACTING FEATURE VECTORS FROM DESIGN DECISIONS 

Figure 6 demonstrates the process of using the PCA to integrate the common features 
of the design intuitions of different architects for the same site. For each task, we 
processed the data as a batch with PCA to reduce noise and prevent overfitting 
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(Moschoglou et al. 2020). Experiments showed that the feature vector was compressed 
to 10 to minimize the loss of data while minimizing the dimensionality of the data. The 
PCA extracted the important features of multiple architects' design strategies for the 
same community design. If we needed to modify the results of AD-GAN, the 10 
principal feature vectors obtained from the PCA calculation (Fig.6(c)) could be formed 
by linearly stacking them with different weights. We continuously stacked the features 
by adjusting the feature parameters until we obtained the AD-GAN morphological 
decision that met the design requirements. 

Figure 6. Data Processing by PCA   (a) Compression of Design Decisions Data  (b) Set Feature 

Vectors According to Reconstruct Errors Parameters (c) Compression of Vector Features 

3.4. STACKING AD-GAN AND URBAN-GAN 

Inputting design tasks, we got the feature map by the trained AD-GAN (Fig.7(a)), and 
then PCA integrated the feature map and decision data of multiple architects to generate 
a new layout with different weight proportions. The layout combined with ten feature 
vectors extracted from the collective intuition decision data to adapt to the changes in 
decision-making during the design process, passing down to Urban-GAN(Fig.7(b)). 

Figure 7. AD-GAN Integrated with Architect Design Decisions Stacking Urban-GAN 
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4. Result 

4.1. RESULTS OF AD-GAN GENERATION AND DESIGN DECISIONS  

The experimental results demonstrated that the layouts generated by AD-GAN could 
simulate architects' design decisions. As illustrated in Figure 8, facing different 
intersections and form boundaries, the results of AD-GAN and the actual results 
exhibited remarkable similarity. Specifically, the bar graph (Fig.8(4)) showed the 
comparison of morphological metrics for different types of tasks between AD-GAN 
and architects. The morphological metrics of layouts generated by AD-GAN, including 
BF, PS and OBL, were highly similar to those in architects' design decisions, with an 
average difference in data comparison ranging between 0.025 and 0.041.  

Figure 8. AD-GAN and Ground Truth Test Results 

4.2. COMPARISON RESULTS OF AD-URBAN-GAN AND URBAN-GAN 

By comparing the output results and morphological metrics of AD-Urban-GAN and 
Urban-GAN in urban tasks, we observed that AD-Urban-GAN's layouts were more 
rational and met task metrics. Figures 9 (1) and (2) revealed that AD-Urban-GAN, 
effectively reduced irregular internal spaces, resulting in more orderly and reasonable 
divisions of public spaces. In terms of coordination with road networks, layouts 
generated by AD-Urban-GAN showed superior performance, indicating that AD-
Urban-GAN could more deeply simulate architects' handling of the complex 
relationship between roads and open building boundaries. Morphological metrics 
analysis, as shown in Figure 9(5), indicated that the morphological metrics of layouts 
generated by AD-Urban-Gan were closer to the design task requirements. For example, 
in public space-type site tasks (Fig.9 (e-5)), the public space (PS) value of layouts 
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generated by AD-Urban-Gan reached 0.195, significantly surpassing the PS value of 
Urban-GAN layouts and meeting the design task requirement of 0.18-0.2 PS. 
Moreover, in densely networked plots, AD-Urban-Gan's results had an advantage in 
terms of open boundary proportion (Fig.9 (c-5)), with an Open Boundary Line (OBL) 
value of 0.169, which was 0.11 higher than that of Urban-GAN and close to the task 
requirement of 0.15-0.18 OBL. Figure 9 (3) showed a comparison between the layouts 
generated by AD-Urban-Gan and the marked diagrams generated by AD-GAN 
simulating architects' design decisions, clearly demonstrating AD-Urban-Gan's 
simulation of architects' design strategies and their alignment with site information.  

Figure 9. AD-Urban-GAN and Urban-GAN Test Results 

4.3. FINE-TUNING AD-URBAN-GAN GENERATED LAYOUT RESULTS 

The experimental results indicated that PCA combined the design decision features of 
multiple architects, finely tuning the results generated by AD-Urban-GAN through 
detailed parameters. PCA was employed to linearly combine architectural design 
decisions from 30 architects with varying weight proportions, iteratively generating 
new design layouts(Fig.10). We demonstrated the changes in layout from different 
proportional combinations of feature vectors 5, 7, and 10. Feature vector 5 represented 
public spaces with lower openness and dispersed independence, feature vector 7 
represented highly open, clustered public spaces and feature vector 10 represented the 
rotation of public spaces. The combination of features 5 and 10 showed a clockwise 
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change in the layout of public spaces while maintaining their independent arrangement. 
The combination of features 5 and 7 illustrated a gradual transition from the 
independent public space layout of feature 5 to the clustered layout of feature 7. We 
utilized PCA  to extract multiple architects' design decision features for the same design 
task. These features were combined and controlled the direction and variation of AD-
GAN results, better fine-tuning the layouts generated by AD-Urban-GAN. 

Figure 10. Fine-Tuning of AD-Urban-GAN for Generating New Layout Results 

4.4. LIMITATION 

GANs currently lack interpretability in understanding the complexity of sites. Graph 
Neural Networks (GNNs) have shown the ability to interpret site conditions (Xu et al., 
2018). In future work, we plan to incorporate GNNs to learn the interrelations between 
site and conditions, combined with the generative capabilities of  GANs to produce 
designs that meet practical task requirements. In our experiments, we simplified the 
design process using a limited dataset, enabling architects to control the GANs results. 
However, in real urban design tasks, more complex site conditions must be considered. 
In subsequent tasks, we will use more comprehensive environmental data to enhance 
the accuracy and design diversity of GAN-generated solutions in practical applications. 
Currently, GANs can only understand and address specific tasks determined by 
datasets. To extend the applicability of GANs to a broader range of design tasks, 
diverse data can be obtained through collaboration with architects, thereby facilitating 
improvements in model training and the promotion of practical applications. 

5. Conclusion 

This study introduces AD-Urban-GAN, a framework that stacks AD-GAN and Urban-
GAN models, combining human architects' design decisions with existing urban layout 
data. It demonstrates formidable adaptability and customization capabilities in 
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handling urban design tasks. Architects can significantly streamline the process of 
generating design prototypes based on specific task types using AD-Urban-GAN, 
achieving precise quantitative control over layout results. The application of AD-
Urban-GAN facilitates a pivotal shift, enabling the formation of a comprehensive 
database containing design decision data during the interaction process between 
architects and machines. This workflow establishes a cycle of data acquisition and 
training to enhance the urban design capabilities of existing GANs. 
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