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Abstract. The early design phase of the gymnasium's enclosing 
interfaces directly affects the indoor daylighting and thermal 
environmental performance. The optimization framework proposed in 
this study aims to simultaneously balance and optimize conflicting 
objectives, including the maximum daylight factor (DF), minimum 
daylight glare index (DGP), and minimum solar radiation (RS) for 
gymnasium. This approach aims to maximize daylighting performance 
in hot summer regions while avoiding glare, reducing energy 
consumption, and ultimately enhancing both daylight comfort and 
energy efficiency during the sports facility design process. Using the 
SPEA-2 genetic algorithm, the study explored the Pareto front solutions 
for three different skylight patterns and established a predictive model 
for design results based on a Radial Basis Function (RBF) neural 
network. Compared to traditional Multi-Objective Optimization (MOO) 
frameworks, this optimization method improves computational 
efficiency and provides more intelligent decision support for the early-
stage design of gymnasiums. 

Keywords.  Multi-Objective Optimization (MOO), Building 
Performance Simulation (BPS), Parametric Design (PD), Predictive 
Model. 

1. Introduction 

Balancing indoor daylighting, thermal comfort, and energy performance is one of the 
most critical objectives in the design of sports facilities (Yang, et al., 2018). Existing 
research has shown that indoor daylighting and thermal environmental performance 
can directly impact sports experiences (Bale and Vertinsky, 2004), comfort levels 
(Fantozzi and Lamberti, 2019), and safety and health (Fan, et al., 2023), with 
continuous effects on the energy consumption of environmental regulation in sports 
arena interiors (Fan, et al., 2023). However, the impact of different morphological 
parameters of sports arenas on environmental objectives is often contradictory, and the 
current challenge lies in ensuring a balance among various targets after complex 
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performance goal calculations during the optimization process. Although multi-
objective optimization based on building performance simulation has been widely 
applied, as demonstrated by Wang Pan et al., who established an MOO framework for 
large sports arena roof structure morphology and spatial layout, evaluating the 
comprehensive performance of three different roof structures in two cases (Wang, et 
al., 2019). Nathan Brown from MIT proposed a new approach involving parameterized 
design space formulation, interactive optimization, and design based on structural 
morphological diversity (Nathan, 2019). However, existing optimization frameworks 
often require crossing multiple software platforms and entail significant computational 
time. This study aims to establish a multi-objective optimization framework to achieve 
automatic morphological optimization based on performance analysis in the early 
design stages of gymnasiums. In this process, the SPEA-2 genetic algorithm and Radial 
Basis Function (RBF) neural network will be introduced for optimization calculations 
and analysis prediction of result datasets. The framework will predict sports hall 
morphologies in the early design stages based on performance data, replacing the 
subjective decision-making process of architects with empirical experience (Figure 1). 

Figure 1. Overall research framework 

2. Methodology 

2.1. MULTI-OBJECTIVE OPTIMIZATION 

In general, the definition of decision variables (inputs) and objective variables (outputs) 
is a prerequisite and a crucial step in addressing MOO problems. In single-objective 
optimization, feasible solutions can be ranked based on the value of the objective 
function, meaning that for any n decision variables x1, x2, x3, ..., xn ∈ Xk, there exists 
fm(xn) ≥fm(xn−1) or fm(xn) ≤ fm(xn−1) to determine their superiority or inferiority. 
However, in MOO problems, the determination of the final optimization results is 
based on the relative concepts generated by balancing the contradictions among various 
optimization objectives. For MOO, with n decision variables, m objective functions, 
and k constraint conditions, the mathematical function is represented as Eq. (1): 

      Min/MaxF(𝑥𝑘) = |

f1(𝑥1) f1(𝑥2) … f1(𝑥𝑛)

f2(𝑥1) f2(𝑥2) … f2(𝑥𝑛)
⋮

fm(x1)
⋮

fm(𝑥2)
⋮

… fm(𝑥𝑛)

| , 𝑥 ∈ X   (1) 

Where, F(𝑥𝑘) represents the set of objective functions in the objective function 
space, while X is the set of decision variables that includes the space containing the 
optimal solution. Here, fm(𝑥𝑛) denotes the individual optimization objective functions, 
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and x is a subset of decision variables. The results of Multi-Objective Optimization 
(MOO) are categorized into two types: non-dominated solutions and dominated 
solutions. The non-dominated solutions of the final population are also known as 
Pareto front solutions, representing the alternative solution set under the combination 
of decision variable parameters obtained through the algorithm's multi-objective 
optimization. 

2.2. RBF NETWORK  

The RBF network is an artificial neural network that uses radial basis functions as 
activation functions. The output of an RBF network is a linear combination of the radial 
basis functions of the input and the parameters of the neurons (Chen, Cowan, and Grant, 
1991). It can approximate any continuous function with arbitrary precision and is 
particularly well-suited for solving classification problems. The functional 
representation of the RBF network is given by Eq. (2): 

      RBF(𝑥) = ∑ wij
h
i=1 exp (−

1

2σ2 ||𝑥 − ci||
2)  j = 1,2,3, . . . , n    (2) 

Where, RBF(𝑥) represents the output of the radial basis function, where 𝑥 is the 
input data vector, ci represents the center vector of the radial basis function, i denotes 
the number of input signal source nodes, j represents the number of neurons in each 
hidden layer, and σ  represents the width parameter of the radial basis function, 
controlling the extent of the function's expansion. RBF is a feedforward neural network 
with a structure divided into three layers: 1) Input layer, consisting of signal source 
nodes; 2) Hidden layer, where the transformation function is RBF, and the number of 
units is determined by the requirements of the problem; 3) Output layer, responding to 
the input patterns. The transformation from the input space to the hidden layer space is 
nonlinear, while the transformation from the hidden layer space to the output layer 
space is linear (Figure 2). 

Figure 2. The structure of RBF neural network. 

3. Optimization process 

The research focuses on the main decision variables of the gymnasium interface 
morphology parameters, conducting MOO studies with daylighting factor (DF), 
average daylight glare probability (DGP), and average cumulative solar radiation (RS) 
as objective variables. This is carried out concerning key interface morphology 
parameters, including skylight, sidelight, and shading parameters. The aim is to explore 
different combinations of interface opening and closing degree parameters under the 
consideration of various daylight and thermal environmental performance goals, along 
with their performance distribution characteristics. The basic framework of this part is 
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illustrated in Figure 3. 

Figure 3. MOO framework for gymnasium interface morphology parameters 

In this segment of the study, the gymnasium interface morphology parameters, 
namely skylight ratio (SR), skylight column number (SN), side window ratio (SWR), 
facade shading ratio (FSR), and facade shading angle (FSA), will serve as the input 
genes for genetic algorithms to form the decision space. The optimization will explore 
the results of the combination of morphology parameters based on DF, DGP, and RS. 
Furthermore, a comparative analysis of the changing trends between different 
generations of optimized solution sets will be conducted. This aims to explore and 
compare the distribution characteristics and variation patterns of different morphology 
parameters and environmental objectives within the optimization solution set. 

3.1. DECISION VARIABLES  

In this study, the input decision variables for the interface morphology parameters are 
as follows: x1—SR, x2—SN, x3—SWR, x4—FSR, x5—FSA. The output variables 
are the DF of the sports hall's activity field, the average DGP from unfavourable 
viewpoints, and the average cumulative RS in the sports hall. 

The study is divided into an optimization process for flat skylights, strip skylights, 
and point skylights. The decision variables X correspond to the numerical models of 
gymnasium under different opening and closing forms, where the model supports the 
continuous combination of values for X within different ranges of morphological 
variables. Thus, it forms the search space for different decision variables. Different 
parameter combinations correspond to a relatively extensive set of design 
configurations (Table 1). 

Table 1. Decision variables (inputs) and objective variables (outputs) 

Type Acronym Variable Names Unit Range 

Decision 

Variables 

(Inputs) 

SR Skylight ratio -- 0.1-1.0 

SN Skylight number  -- 1-10 

SWR Side window ratio  -- 0.1-1.0 

FSR Façade shading ratio  -- 0.1-1.0 

FSA Façade shading angle ° 0-90 

Objective 

Variables 

(Outputs) 

DFsports hall Daylight factor % -- 

DGPave-court Average daylight glare probability -- -- 

RSave-court Average cumulative solar radiation kWh/㎡ -- 

 

508



INTEGRATING GENETIC ALGORITHMS AND RBF 

NEURAL NETWORKS IN THE EDS OF GYM MOO 

FRAMEWORK 

3.2. OPTIMIZATION OBJECTIVES  

In this optimization process, three objectives are set as the DF, the average DGP, and 
the average cumulative RS within the sports hall. Three conflicting objective functions 
are used to define the trade-off between maximizing the DF while minimizing both the 
DGP and the cumulative RS intensity. Therefore, in the optimization objective setting, 
the objective function F1(y)  corresponds to the negative maximum value of the 
daylighting factor, F2(y) corresponds to the minimum value of the daylight glare 
probability, and F3(y) corresponds to the minimum value of the cumulative radiation 
in the sports hall, as shown in Eq. (3)-(5):  

F1(y) = −DFmax(x)     (3) 

F2(y) = DGPmin(x)      (4) 

F3(y) = RSmin(x)      (5) 

4. Results 

4.1. DECISION VARIABLES DISTRIBUTION   

In this section, a MOO exploration was conducted for the combination pattern set of 
sports arena interface parameters (side facade, roof interface). The optimization process 
was carried out separately for three typical skylight forms in the gymnasium: strip 
skylight, point skylight, and flat skylight. Using the intelligent driving of the SPEA-2 
genetic algorithm toolbox, the study independently performed performance 
calculations and iterative comparisons for multiple scenarios using Ladybug tools. 
During the calculation process, the non-dominated solution ratios for strip, point, and 
flat skylight patterns all exceeded 80% by the 20th generation. The optimization 
solutions from the 20th generation were selected as the final alternative solution set. 

From the overall distribution of optimization solutions, the three skylight forms 
exhibit similar performance in terms of DF, DGP, and cumulative RS, with no 
significant differences in performance distribution. Figures 4 depicts the distribution of 
Pareto front solutions' objective values for point skylight, one typical pattern under 
different interface opening and closing parameter combinations. Partial geometric 
models of typical optimized solutions under different skylight ratios are also presented, 
ranging from left to right, corresponding to different optimal solutions and combination 
differences of other morphological parameters as skylight ratio increases. The lower 
part shows the parallel set plot of the correlation between optimized solution 
morphological parameters and target variables, as well as a typical set of optimized 
solutions classification according to skylight ratio. 

509



Z. FAN, S. TANG AND M. LIU 

 

Figure 4. Parameter distribution and classification of optimal solutions under point skylight pattern  

4.2. OBJECTIVE VARIABLES DISTRIBUTION  

Figure 5 illustrates the distribution and changing trends of objective values of 
Pareto front solutions in key generations during the optimization process for different  

skylight patterns. For the strip skylight pattern, with the increase in the number of 
iterations, different objectives show different changing trends. Considering the range 
of optimized solutions at the 20th generation, the 10th, 15th, and 20th generations are 
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selected as key generations for comparison. Taking the daylighting factor as an  

 Figure 5. Distribution of objectives in different generations of optimization solutions 

example, the range of the Pareto front solutions is primarily between 12% and 26% at 
the 10th generation, expanding to 15.5%-27.5% at the 15th generation, and finally 
ranging between 13.5% and 26% in the final generation (20th). The average 
daylighting factor of the optimized solutions increased from 18% to 20%, representing 
an improvement of approximately 11%. 

In addition, clustering analysis was conducted on the morphological parameters of 
different schemes. A morphological parameter map was then generated based on the 
Euclidean distances between parameters (as shown in Figure 6). This facilitates 
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designers in making better choices for further development. 

 Figure 6. Optimized solution morphological parameter clustering map 

4.3. PREDICTION MODEL  

In the RBF optimization model, the set of shape parameters outputted by 

the MOO serves as the independent variables (inputs), while the environmental 

target dataset serves as the dependent variables (outputs). The hidden layer had 

129 neurons; the radial basis expansion rate was set at 500. Learning was con-

ducted separately for different skylight patterns. In this process, 70% of the data 

samples were used as training samples, and 30% were used for testing. Figure 7 

illustrates the prediction results for  

Figure 7. The comparison between the actual values and predicted values of the prediction model 

different performance objectives. The prediction model for the point skylight pattern 
showed the highest fitting degree, achieving an explanatory level (𝑅2) of 65.7% for 
solar radiation. In contrast, the prediction model for the flat skylight pattern had a 
relatively lower fitting degree, approximately 35%. This may be related to overfitting 
caused by a high expansion rate. Figure 8 shows the predicted RMSE of strip skylights 
for different objectives, among which the prediction error of daylight comfort is the 
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lowest, with RMSE% of about 17%. In further research, different expansion rates will 
be adjusted for different morphological parameter sets to improve the explanatory level 
of the prediction model.  

Figure 8. RMSE comparison of strip skylight prediction models 

5. Discussion 

The study tested the effectiveness of BPS-based MOO in enhancing the daylighting 
and thermal performance of facades and skylights in the early stages of stadium design. 
Compared to manual testing methods, this approach is more continuous, explores more 
comprehensive solution parameters, and can form predictions for new designs based 
on existing optimization solution sets. However, the study still has some limitations, 
mainly reflected in: 

1) The prototype of the study only optimized the facade and skylights of a square 
sports hall, lacking discussions on other irregular-shaped gymnasiums. In future 
research, the scope of parametric prototypes will be expanded to adapt to a wider range 
of gymnasium optimizations. Additionally, more shading and skylight opening styles 
should be refined for discussion and comparison to expand the search range of decision 
variables. 

2) The study tested the gymnasium facade and skylights as an integrated system, 
using a standard CIE sky model. It ignored the impact of different orientations on 
sunlight and radiation, which typically varies based on the geographic location and 
climate zone of the case. This difference can be addressed by further comparing 
simulation results for different directions (east, west, south, north) to provide more 
refined optimization results. 
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3) The prediction model in this study was mainly achieved through data modelling. 
In future research, exploring the correlation mechanism between optimization result 
maps and morphological variable images using GNN tools can lead to more intuitive 
and efficient predictions of gymnasium design performance. This can reduce the time 
cost of long-term simulation and provide a more visual design assistance for the green 
design and sustainable optimization of sports buildings.  

6. Conclusion 

This study proposes a multi-objective optimization and prediction method based on 
genetic algorithms and RBF neural networks through the optimization of 
morphological parameters of community sports stadium interfaces (facade and 
skylights). The aim is to collaboratively enhance the early-stage design of stadiums for 
daylighting, daylight comfort, and energy load optimization. This approach seeks to 
improve the passive environmental regulation capability of design outcomes. The 
decision variables in this study include the stadium skylight ratio (SR), skylight 
numbers (SN), side window ratio (SWR), facade shading ratio (FSR), and facade 
shading angle (FSA). The optimization objectives are daylight glare probability (DGP), 
daylight factor (DF), and daylight radiation load (RS). The study compares the multi-
objective optimization results of environmental performance in three different skylight 
modes of sports hall. Additionally, it establishes a design prediction model based on 
RBF neural networks for the Pareto front solution set. This method provides a technical 
framework and decision support for intelligent prediction and automatic optimization 
of environmental performance in the early-stage design of gymnasiums. 
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