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Abstract. With continued population growth and urban expansion, 
the severity of environmental concerns within cities is likely to increase 
without proper urban ecosystem monitoring and management. Despite 
this, limited efforts have been made to effectively communicate the 
ecological value of urban vegetation to Architecture, Engineering and 
Construction (AEC) professionals concerned with mitigating these 
effects and improving urban liveability. In response, this research 
project proposes a novel framework for identifying and conveying 
historical changes to vegetation coverage within the Greater Sydney 
area between 1992 and 2022. The cloud-based geo-spatial analysis 
platform, Google Earth Engine (GEE), was used to construct an 
accurate land cover classification of Landsat imagery, allowing the 
magnitude, spatial configuration, and period of vegetation loss to be 
promptly identified. The outcomes of this analysis are represented 
through an intuitive web platform that facilitates a thorough 
understanding of the complex relationships between anthropogenic 
activities and vegetation coverage. A key finding indicated that recent 
developments in the Blacktown area had directly contributed to 
heightened land surface temperature, suggesting a reformed approach 
to urban planning is required to address climatic concerns 
appropriately. The developed web interface provides a unique method 
for AEC professionals to assess the effectiveness of past planning 
strategies, encouraging a multi-disciplinary approach to urban 
ecosystem management.     
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1. Introduction 
Between 1990 and 2022, the population of Greater Sydney increased from 
approximately 3.6 to 5.2 million residents (Macrotrends, 2023). This significant 
population growth has resulted in rapid urban expansion, characterised by outward 
low-density development or urban sprawl (Chen et al., 2017). This widespread 
conversion of forests and grasslands to hard, impervious surfaces, coupled with past 
planning strategies focused on affordable housing and employment targets has 
generated numerous adverse environmental effects (Wu and Murray, 2003). These 
effects include biodiversity loss, habitat fragmentation, noise pollution, increased 
building energy consumption and the urban heat island (UHI) effect (Li et al., 2022). 
The latter, combined with climate change-induced increases in the magnitude and 
frequency of temperature fluctuations, is already threatening the livelihood of urban 
inhabitants (Li et al., 2022). With a further population growth of 3.2 million expected 
by 2056 (Macrotrends, 2023), the severity and regularity of these issues is likely to 
increase without planning reform that recognises the social, ecological and 
environmental value of urban vegetation (Zhang et al., 2022). The sufficient presence 
of healthy vegetation within an urban setting provides a multitude of benefits to city 
dwellers, including sequestration of carbon, improved air quality, increased 
evapotranspiration, maintenance of biodiversity, reduction of building energy 
consumption (Yang et al., 2022) and the mitigation of the UHI effect (Davies et al., 
2017). Despite this, past planning strategies by the NSW government have failed to 
properly leverage these benefits due to a lack of ecological knowledge (Davies et al., 
2017). 

Few researchers have explored the possibilities of sharing ecological information 
in an intuitive, timely and easily accessible manner. Therefore, a framework for 
delivering accurate knowledge of the state of urban vegetation to AEC professionals 
could encourage a multidisciplinary approach to urban planning and influence future 
regulation on vegetation management. The research detailed in this paper explores the 
possibilities of using the cloud-based geo-spatial analysis platform, Google Earth 
Engine (GEE), to develop a web interface for facilitating the transfer of this knowledge 
(Gorelick, 2017). The initial attainment of information involved an extensive review 
of previous historical vegetation analysis studies. Through this, a structured framework 
was devised using Landsat and a supervised machine learning model to create an 
accurate land cover classification. The results of the analysis were communicated 
through a variety of visualisation techniques, including land cover maps; depicting geo-
physical characteristics under five distinct land cover classes, land surface temperature 
maps; showing areas most affected by the UHI effect, ‘true colour’ maps; displaying a 
natural colour composite of satellite imagery and line charts that compare the trends of 
population and land cover types. To facilitate the transfer of this information to AEC 
professionals concerned with mitigating the UHI effect and improving urban 
liveability, a user-friendly and functional web interface was developed. The completed 
web interface will allow built environment professionals to evaluate past planning 
strategies and make informed decisions about future urban ecosystem management. 
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2. Literature Review 
Satellite remote sensing is a common method for understanding the interactions 
between human activities and natural environments (Zhang et al., 2022). This process 
involves monitoring the geo-physical characteristics of a region of interest (ROI) by 
measuring its radiation emission and reflectance from a distance (U.S. Geological 
Survey, 2023). It is especially valuable for the detection of land use and land cover 
(LULC) changes, as direct field studies are costly, time-consuming, and prone to 
human error (Coppin et al., 2004; Lu et al., 2004). Recent studies in the field of change 
detection have placed a significant emphasis on the identification and mapping of urban 
vegetation, due to the rapid expansion of cities and growing climatic concerns (Chen 
et al., 2017; Li et al., 2022; Zhang et al., 2022). The ‘Landsat’ collection (30 m pixel 
resolution), since its launch in 1972, has been the predominant choice among scholars 
for urban vegetation mapping (Coppin et al., 2004; Lu et al., 2004; Zhang et al., 2022). 
Like other satellite imagery, Landsat captures multispectral data by measuring 
radiation reflectance values across multiple bands, with each band corresponding to a 
particular wavelength range in the electromagnetic spectrum (Coppin et al., 2004).  

Recent studies have employed machine learning (ML) algorithms as a method of 
classifying surface characteristics due to their ability to produce high accuracies in 
complex, heterogeneous environments (Gibril et al., 2018). Supervised learning 
models are the most documented algorithm for classifying LULC, as class labels are 
generally pre-defined under four major land cover types: water bodies, built areas, bare 
land and vegetation (Mehmood et al., 2023). A review of popular supervised models 
revealed that random forest (RF) algorithms consistently outperformed other models 
in a complex urban setting (Chaturvedi & de Vries 2021). Applications of this method 
by Duncan and Boruff (2023) and Shrestha (2023) both succeeded in accurately 
characterising changes over 20 years (1999 - 2019) to the abundance and configuration 
of vegetation within the Greater Perth and Alabama metropolitan areas, respectively 
and concluded that RF was an appropriate method for evaluating the effectiveness of 
vegetation management initiatives and policy changes. They also suggested that 
increases to dwelling and population density resulted in changes to urban vegetation, 
reflecting the importance of including external datasets in the analysis process to ensure 
that drivers of change are properly understood. A comparison of these results with the 
earlier image differencing models revealed a distinct discrepancy in the level of detail 
produced, with ML models demonstrating a significant advantage in their ability to 
classify sporadic clustering of vegetation precisely. Another significant advantage is 
the ability to validate the results of a specific classification model with an accuracy 
assessment that determines whether each pixel has been correctly fitted to the 
appropriate class. This form of immediate feedback allows researchers to make guided 
adjustments to their analysis techniques, ensuring that accurate results are produced. 
Conclusions of similar studies by Gibril (2018) and Hoang and Tran (2021) 
emphasised the significance of developing a streamlined framework for clearly 
communicating the results of multi-year vegetation analysis to ensure appropriate 
changes are made to future urban planning and management strategies. 

For explicitly mapping changes across a time series of land cover maps, image 
differencing is used to identify alterations between two classes (Afify, 2011). A typical 
example used by researchers was a transition from grassland or forest to built land, with 
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changed pixels visualised as red and unchanged pixels as white (Basheer et al., 2013). 
This process is beneficial for identifying the extent of urban expansion and consequent 
vegetation loss within cities, however, it does not necessarily illuminate key periods of 
temporal change. For this, a calculation of class area across a time series of images can 
be used to create line graphs highlighting the temporal relationships between 
urbanisation and vegetation (Zhang et al., 2022). By demonstrating the results of 
historical vegetation analysis through a variety of visualisation techniques, conclusions 
can be quickly made about the magnitude, spatial configuration and period of 
vegetation loss.  

Although there are web platforms that allow built environment professionals to 
visualise geo-spatial data, few of these provide accurate mapping of historical changes 
to vegetation coverage. Conclusions by Mehmood (2023) and Zhang (2022) suggested 
that clear and timely communication of the state of urban vegetation is imperative for 
urban planners as they devise new strategies to mitigate the UHI effect and improve 
urban liveability. As such, a tool allowing design professionals to engage with expert 
knowledge and data relating to the complex nature of spatio-temporal changes to 
vegetation could be useful to inform future regulatory frameworks and urban planning 
strategies. Many of the investigated papers used Google Earth Engine and other GIS 
software such as ArcGIS to accurately analyse urban vegetation coverage (Basheer et 
al., 2022), however, they did not convert this information into an accessible and shared 
format. The possibilities of using Google Earth Engine to both analyse satellite imagery 
and design a functional user interface will be explored in this paper. 

3. Methodology 
This case study details how Google Earth Engine can be used to develop a web 
interface for visualising changes to historical vegetation coverage within the Greater 
Sydney area between 1992 and 2022. Within this framework, a supervised 
classification model was applied to a sequence of Landsat imagery to accurately 
identify vegetation coverage within a complex, heterogeneous urban environment. The 
results of this analysis were communicated through raster maps and trend charts within 
an interactive web platform, allowing built environment professionals to understand 
the magnitude, spatial configuration and period of historical vegetation loss in an 
intuitive and simple manner. 

3.1. DATA 
Satellite imagery from the Landsat program was used for the analysis due to several 
determining factors, including an extensive and consistent catalogue of imagery, a 30 
m pixel resolution and its multi-spectral capabilities. Out of the six available Landsat 
collections, four were used to ensure a consistent sequence of imagery was achieved 
across the 30-year time span. These are listed along with their operational years: 

● Collection 5 (1984 to 2012), collection 7 (1999 to 2021), collection 8 (2013 to 
present) and collection 9 (2021 to present). 

3.2. FILTER 
Each satellite collection contains global imagery from the entire span of its operation, 
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meaning a large portion is not required for a region and time-specific analysis. To 
resolve this, a function was created and applied to each collection that iteratively 
filtered images based on a set of given parameters. These parameters were determined 
based on the region, time and cloudiness of scenes within the collection. Any images 
not overlapping with the Greater Sydney region were removed to eliminate 
unnecessary data processing. A time span between 1992 and 2022 was established to 
ensure a comprehensive analysis was conducted. Within this span, an interval of three 
years was determined to limit short-term fluctuations such as seasonal variability yet 
still accurately capture significant changes to vegetation extent. This operation culled 
any images that were captured outside of the following years: 1992, 1995, 1998, 2001, 
2004, 2007, 2010, 2013, 2016, 2019 and 2022. Finally, any images that contained over 
10% cloud coverage were removed to ensure a high level of accuracy and reliability 
was maintained in the analysis. 

3.3. IMAGE PROCESSING 
A function was created to detect cloud coverage and over-saturation within an image 
and then mask over any pixels within these areas. The band values of masked pixels 
are set to ‘null,’ meaning they will not be used as data points in the analysis. Another 
fundamental part of the pre-processing stage is normalisation, which involves the 
remapping of band values. The default range for any given band is 1 to 65455, meaning 
large fluctuations between recorded reflectance values of both bands and images is 
likely. These significant discrepancies can make distinguishing between different geo-
physical features difficult and in turn substantially decrease analysis accuracy. To 
mitigate these issues, the original range was scaled to achieve consistency across all 
bands and images. The new range was defined as -1 to 1, aligning with commonly used 
normalised index values. With band standardisation completed, the images are now 
appropriately processed to ensure a reliable and precise analysis can be performed. 

3.4. SEQUENCE 

A unified sequence of imagery was achieved by first merging the collections and then 
sorting the combined collection by date to ensure chronological order. The combined 
collection was partitioned into 11 segments that corresponded with each year in the 
sequence. The total image count for each segment was calculated:  

1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022 
15 20 17 19 58 49 33 49 42 63 35 
A ‘for’ loop was created to apply a median operation to each imagery segment. This 

function calculates the median of all values at each pixel across the entire stack of 12 
bands (Gorelick, 2017). The outcome is a series of 11 images that are unaffected by 
seasonal variability and cover the entire Greater Sydney region. An example is 
provided in Figure 1. 
 
  

Figure 1: True Colour Composite 1992 
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3.5. CLASSIFY 
A thorough investigation of machine learning models identified the random forest 
algorithm as the most accurate and reliable due to its ability to limit the under and over-
fitting of classes. The land cover classification process is detailed under four main 
headings: training data, classifier build, accuracy assessment and area calculation. This 
structured method was applied to each image separately, to ensure variability across 
images did not affect the accuracy and reliability of the classification. 

3.5.1. Training Data 
Five land cover classes were chosen for the supervised classification model: water, 
built-forms, bare land, grassland, and tree cover. For each of these classes, a set of 
training polygons was manually created by identifying and labelling instances of the 
specific land cover type using a ‘true colour’ visualisation of the image. The number 
of polygons defined for each class ranged from 90 to 110. This small range ensured 
that each class was represented equally within the classification model. The spatial 
configuration of the polygons was altered across images to ensure that land cover types 
were not incorrectly labelled due to landscape changes.  

3.5.2. Classifier Build 
After a set of polygons had been created for each land cover class, they were combined 
to form a unified dataset. This collection was then split into two subsets, with 80% 
designated for training the classifier and 20% assigned for the later accuracy 
assessment. GEE facilitates the construction of classification models through several 
built-in machine-learning functions, which take the training polygons and image bands 
as inputs. A random forest algorithm consisting of 10 independent decision trees was 
selected for the classification. Each decision tree is constructed using a random section 
of data from the training subset, to ensure that no single class dominates the pattern 
detection process. Beginning with a root node, each tree recursively splits data based 
on specific thresholds, which are determined by the band values associated with each 
polygon sample. With each split created, the heterogeneity of classes is progressively 
minimised until an accurate class prediction can be made. The estimates of each 
decision tree are collected and a majority vote is conducted to determine the most 
probable class. This process is applied to each pixel within the image, resulting in a 
complete land cover classification that contains water, built-land, bare land, grassland 
and tree cover classes.  

3.5.3. Accuracy Assessment 
An accuracy assessment was conducted to validate the classifier’s effectiveness by 

overlaying the validation subset (20%) onto the classified image. Each polygon’s 
labelled land cover class was compared with the underlying classification. Depending 
on the amount of correctly classified pixels within the polygon, a score between 0 and 
1 was assigned. The average of these scores was calculated, resulting in an overall 
accuracy percentage. The recorded accuracy of each classifier within this method was 
above 90%. It is noted by most papers discussed in the literature review, that a 
classification accuracy higher than 85% is deemed appropriate for a reliable 

520



VISUALISING SYDNEY’S URBAN GREEN 

identification of urban vegetation (Chaturvedi and de Vries, 2021). Therefore, each 
land cover classification accurately depicts the extent of urban vegetation within the 
Greater Sydney area. 

3.6. WEB INTERFACE 
The finished interface (Figure 2) is a functional and easy-to-use web platform that 
allows the industry partner and AEC professionals to view the outcomes of the research 
project in a timely, efficient, and interactive manner. The intuitive nature of the 
application ensures that insights about key spatio-temporal changes to vegetation can 
be quickly determined. The information obtained from the interface enables AEC 
professionals to validate the effectiveness of past planning strategies and devise smarter 
decision-making for future sustainable management of urban ecosystems and 
inhabitant satisfaction.  
 
 
 
 
 
 
 
 
 
 

4. Findings 
A thorough study of two SA4 areas was conducted to demonstrate the effectiveness of 
the web platform as a method of identifying critical changes to vegetation coverage. 

4.1.1. Outer Southwest 
 
There was a steady population increase between 1992 and 2022 in the Outer 

Southwest region, from 192,420 people to 303,902 people. To accommodate this 
growth, consistent urban expansion occurred within a critical area, located in the 
northern part of the region. The total area of built land increased from 138 to 206 km², 
leading to a significant decrease in grassland cover, from 437 to 372 km², indicating 
most developments occurred on greenfield sites. The proportion of grassland coverage 
declined by approximately 5%, with built land increasing by 6%.  

4.1.2. Blacktown  
 
Like the Southwest, Blacktown’s population substantially increased between 2013 

and 2022, with a rise from 327,424 people to 414,725 people. A key area of 
development was identified in the northern part of the region (Figure 3). Changes to 

Figure 2: Web Interface 
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land surface temperature within this area were investigated, indicating an increase in 
heat that corresponded with the spatial configuration of the new development. The 
proportion of grassland decreased by a staggering 9%, with built land increasing by 
roughly 6% between 2013 and 2022. 

 
 
 
 
 
 
 
 

 
 

5. Discussion 
A rigorous testing of the web interface was conducted to evaluate the platform’s 

functionality, useability and applicability to the AEC industry. The timely 
identification of critical vegetation loss across a sequence of images was recognised as 
a primary benefit of the platform. This method was used to recognise a direct 
relationship between rapid urban expansion and heightened land surface temperature 
in the Blacktown area. Industry professionals can use these insights to determine how 
similar urban development may affect the micro-climate of a designated region, 
encouraging an informed approach to mitigating the UHI effect and improving urban 
liveability. Another valuable feature is the ability to determine trends of different land 
cover types. These observations can be used to accurately track the rate of vegetation 
loss and determine which land types are being cleared to accommodate new 
developments. Therefore, the web interface demonstrates notable applicability to AEC 
professionals concerned with improving Sydney’s urban ecology. 

Due to the limited ten-week timespan assigned for the research project, ground truth 
data still needed to be implemented to further validate the classifier’s reliability. 
Although each land cover type was carefully chosen and equally represented in the 
classification model, manual labelling of classes could be considered a subjective 
method. The use of ground truth data, in conjunction with the accuracy assessment 
completed, would further validate the reliability and accuracy of the process. Also, due 
to the project’s limited scope, a few features were omitted from the developed 
framework, including a change map; showing areas where a transition between two 
land cover types had occurred and a future prediction model, which would estimate 
prospective land cover changes. Further developments of this research project could 
investigate the potential of using a regression model to forecast future impacts of 
vegetation loss on urban climate and liveability. This could further encourage AEC 
professionals to adopt a planning approach that recognises urban vegetation’s social, 
ecological and environmental value.  

The developed web interface is a unique example of how knowledge, relating to 

Figure 3: LST and Land Cover Changes 1995 to 2022 in 
Blacktown 
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the complex nature of spatio-temporal changes to vegetation can be shared with AEC 
professionals in an intuitive and accessible manner, to ensure future planning 
approaches recognise the ecological and environmental value of urban vegetation. 

6. Conclusion 
The research detailed in this paper explored the possibilities of using GEE to develop 
an accessible web platform for monitoring vegetation extent in the Greater Sydney area 
between 1992 and 2022. A supervised classification model was applied to a sequence 
of Landsat imagery to create an accurate and reliable estimate of urban vegetation. The 
results of this analysis were visualised in a clear and concise manner through a variety 
of raster maps and trend charts, allowing AEC professionals to easily interpret complex 
spatio-temporal changes to vegetation. A functional and accessible web interface was 
developed to facilitate the transfer of this knowledge to urban planners, encouraging an 
informed approach to mitigating the UHI effect and improving urban liveability.  

With continued population growth and urban expansion, the severity of climatic 
concerns within cities is likely to increase without proper urban ecosystem monitoring 
and management. The research detailed in this paper provides a unique and intuitive 
method for AEC professionals to assess the effectiveness of past planning approaches 
and encourages a multidisciplinary strategy for urban ecosystem management. How 
could an informed approach to urban ecosystem management affect the growing 
climatic concerns within cities? 
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