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Abstract. In architectural theory, the spatial experience is dynamic, 
evolving from sequences of interconnected views shaped by past 
encounters and future expectations. Traditional computational methods 
such as Isovists provide geometric insights but fall short in representing 
their sequential nature. To address this gap, the paper introduces a novel 
methodology that combines agent-driven simulation, 3D Isovist 
sampling, and deep learning for quantitative analysis and comparison 
of spatial experiences in architecture. This approach leverages the 
Grasshopper plugin Pedsim for simulating pedestrian paths and a self-
supervised video representation learning model MemDPC for 
processing depth panorama sequences and extracting numerical 
features for each sequence. The methodology is first validated through 
a controlled experiment with various sequence typologies, affirming its 
efficacy in recognizing typological similarities. A case study is 
conducted comparing Louis Kahn's designs with Roman architecture, 
quantitatively analysing their intertwined spatial experiences. This 
research offers a framework for quantitatively comparing spatial 
experiences across buildings and interpreting the nuanced impact of 
historical references on modern spaces. 
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1. Introduction 

In the field of architectural theory, the representation of spatial experience has 
been discussed extensively, particularly focusing on its dynamic and selective 
nature. Zevi views in Architecture as Space that architectural spatial experience 
as a time-imbued continuum, best captured through film rather than static images, 
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to capture the full essence of navigating and interacting with spaces (Zevi, 1974, 
p. 59). Adding to this dynamic aspect is the selectivity of spatial experience.  
Ching suggests in Architecture, Form, Space, and Order that our experience of 
space is inherently selective, influenced by our navigation in the space (Ching, 
1979, p. 280). This selectivity in perception means that we don't absorb all 
elements of a space equally; rather, our focus shifts as we navigate, leading to a 
subjective interpretation based on our position and movement (Hershberger, 1970, 
p. 43). Such subjectivity presents a challenge for architects and theorists who seek 
to understand and compare architectural spaces in a more objective lens. 
Traditional methods of quantitative representation—such as plans, sections, and 
static images—offer a fragmented view that misses the fluid continuum of 
experience as described above. 

Addressing this gap, the research introduces a novel methodology for 
quantitatively representing and comparing architectural spatial experiences. It 
integrates agent-driven simulation, 3D Isovist techniques, and artificial neural 
networks for pedestrian path generation, spatial data capture, and feature 
extraction. The methodology is validated through two experiments. The first 
employs self-supervised learning for feature extraction from spatial sequence 
typologies, using unsupervised clustering to validate the features’ self-clustered 
quality, then applies a supervised classifier to translate features into legible 
sequential types. The second experiment extends the methodology to a real-world 
application, examining the influence of Roman architecture on Louis Kahn's 
designs. The model, fine-tuned for complex architectural spaces, categorizes 
sequential types to initially understand typological similarities and differences. 
Subsequent in-depth feature analysis through unsupervised clustering and nearest 
neighbour methods uncovers latent patterns within same sequential type. This 
methodology converts subjective spatial experiences into quantifiable data, 
enabling an objective comparative analysis of historical and contemporary 
architectural elements. 

2. Related Works 

     Machine learning involves computer systems that analyse and deduce patterns 
in data through algorithms and statistical models. This approach is particularly 
beneficial in architectural spatial analysis, facilitating the understanding and 
interpretation of complex spatial data. Machine learning includes categories such 
as supervised and unsupervised learning. Supervised learning trains models on 
labelled datasets for classifying data or predicting outcomes. In contrast, 
unsupervised learning explores unlabelled data to uncover its inherent structure 
(Deng & Yu, 2014). In architectural spatial analysis, both methods offer distinct 
benefits. The predefined labels of supervised learning enhance interpretability and 
specificity but lack generalizability across diverse architectural spaces. 
Unsupervised learning, which discerns patterns from unlabelled data, offers 
broader exploration capabilities. However, the lack of human-readable labels 
necessitates additional analysis for interpretation.  

Isovist analysis is essential in architectural studies for quantifying spatial 
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environments. It maps visible points from a selected perspective, translating 
spatial geometry into perceptual experiences, capturing both phenomenological 
and morphological aspects of spaces (Benedikt, 1979). This approach has evolved 
over decades in fields such as analysing plan visibility and urban space quality 
(Dawes & Ostwald, 2014; Leduc et al., 2011; Turner et al., 2001). Recent years 
have seen a surge in the integration of Isovist methods with breakthroughs in deep 
learning. Peng et al. (2017) use 2D depth map images of 3D Isovists to train a 
deep convolutional neural network in a supervised learning manner to classify 
spatial typologies. Conversely, Johanes & Huang (2021) applied self-supervised 
learning on 2D Isovist data, using an unsupervised clustering algorithm to 
categorize spatial plans. Additionally, recent studies have merged 2D Isovist 
analysis with pedestrian trajectory simulations, analysing Isovist data along 
simulated paths using unsupervised clustering to uncover spatial properties (Feld 
et al., 2020; Sedlmeier & Feld, 2018). Building on these developments, the 
proposed experiments seek to integrate the strengths of both supervised and 
unsupervised learning methods, combining human-readable categorization of 
supervised learning with the flexible pattern discovery of unsupervised learning. 
This hybrid method is designed to create a comprehensive and adaptable 
framework for architectural analysis. 

3. Methods 

This study employs a comprehensive methodology combining agent-driven 

simulation (Section 3.1), 3D Isovist sampling (Section 3.2), and self-supervised 

representation learning (Section 3.3). It aims to capture the complexity of spatial 

experiences by simulating pedestrian behaviour, sampling spatial geometry 

through 3D Isovists, and extracting latent representations of these experiences 

using self-supervised learning techniques (Figure 1). This approach is designed 

to systematically encode and analyse spatial sequences in architecture. 

3.1. AGENT-DRIVEN SIMULATION 

To effectively capture the subjective nature of spatial sequences, the study 

utilizes PedSim, a Grasshopper plug-in that simulates pedestrian paths using the 

social force model and anticipatory collision avoidance (Riise, 2022). While 

actual pedestrian movement data could be sourced from real-world sensors, the 

controlled simulation ensures consistent input for analysis purpose. Agents in 

the simulation algorithm will move from designated start to end points, visiting 

various points of interest within their field of vision. For consistency and 

comparability across different spaces, each trajectory is established with a single 

start and end point, along with ten interest points strategically selected to 

represent architectural features such as columns and arches. The intentional 

inclusion of expert knowledge ensures a realistic simulation of pedestrian 

behaviour. Paths taken by these simulated agents are recorded and converted 

into 3D polylines at a standard eye level of 1.6 meters for 3D Isovist sampling. 
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By simulating various paths within a single trajectory, the approach reflects 

diverse individual experiences in a unified spatial sequence. This variety also 

serves as data augmentation, ensuring robustness in subsequent model training. 

Figure 1. Illustration of Proposed Pipeline 

3.2. 3D ISOVIST SAMPLING 

This study’s 3D Isovist sampling employs a custom Python-scripted 

component in Grasshopper to process simulated pedestrian paths. Each path is 

segmented into 30 equally spaced points. At each point, rays are projected onto a 

sphere's surface, and the distances at intersection points are computed and 

transformed into grayscale values. These values are then remapped into depth 

panorama images, conforming to the resolution parameters established by Peng et 

al. (2017). A consistent maximum sampling distance of 20 meters is set to 

accommodate the monumental scale of the buildings in the following case studies. 
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It is vital to recognize that while these depth map images effectively capture 

spatial geometrical boundaries facing rays, they represent a reduced version of the 

complete spatial experience. This study specifically focuses on spatial geometry 

information, presenting it as a simplified form of spatial experience. Therefore, 

the complexity of representing spatial experience is distilled into 30 sequential 

depth panorama images for each simulated path. These image sequences, 

formatted as videos, are compatible with existing self-supervised video 

representation learning models, enabling a more nuanced analysis of spatial 

perception. 

3.3. SELF-SUPERVISED REPRESENTATION LEARNING 

Self-supervised learning (SSL) is a subset of unsupervised learning. It trains 

models on large datasets without the need for predefined labels, thus overcoming 

the limitations of supervised learning (Jing & Tian, 2019). SSL employs 'pretext 

tasks', derived directly from unlabelled data, such as video reconstruction or frame 

order prediction. Solving such complex pretext tasks requires the model to have a 

high-level understanding of the training data to learn generalizable features 

(Schiappa et al., 2023). SSL in this study involves employing MemDPC, a model 

that uses frame prediction as its pretext task (Han et al., 2020). This model divides 

each video into blocks, encoding them into embeddings. These embeddings are 

time-aggregated using RNNs (Recurrent Neural Networks) to extract the context 

feature for each block. A global attention mechanism is initialized as a learnable 

memory bank for hypothesis formation and future block prediction. After training, 

an average pooling layer condenses the context features of each block into a 256-

dimensional feature vector, representing the latent spatial experience of a 

simulated path. The memory bank approach conceptually resembles how humans 

accumulate spatial experiences. For humans, this includes visual impressions and 

understanding of spatial relationships. However, unlike human cognition, neural 

networks identify patterns without semantic understanding, necessitating further 

analysis. Subsequent experiments use sequential typologies as labels to translate 

these SSL-acquired features into human-readable terms and analyses these 

features to discern underlying similarities. 

4. Experiments

This section details experiments that validate our framework for studying 
sequential spatial experiences, combining a supervised approach for identifying 
typological similarities and differences, and an unsupervised method for in-depth 
pattern discovery. The first experiment, utilizing the 'typology dataset', validates 
the model's capability in autonomously clustering features through self-
supervised learning. A supervised classifier is then applied to these features to 
translate the 256-dimensional vector into nine human-readable sequential 
typologies. The second experiment, with the 'case study dataset', fine-tuned this 
model to adapt to the complexities of real-world architectural spaces. Here, the 
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classifier initially categorizes sequential typologies, facilitating a preliminary 
organization of trajectories. This is followed by a detailed feature analysis using 
similarity measures and clustering, designed to reveal deeper patterns and nuances 
within architectural spaces categorized under the same typology. 

4.1. EXPERIMENT I: SEQUENTIAL TYPOLOGIES 

The first experiment examines the SSL model's ability to effectively extract 
features, using a typology dataset of 2,700 path sequences with three space types: 
'room', 'passage', and 'exterior' at both start and end, creating nine distinct 
combinations (Figure 2). These sequence data undergo augmentation during SSL 
training, including adjustments in brightness, playback speed, cropping, and 
horizontal flips. After training, each sequence is transformed into a 256-
dimensional feature vector. The model's performance in feature extraction is 
initially assessed by its validation accuracies in the SSL pretext task of frame 
prediction, achieving 75% top-1 and 99% top-5 accuracies. These results indicate 
a robust feature learning capability without the need for labelled data. To further 
evaluate the learned features, unsupervised clustering is applied. Using the K-
means algorithm (Lloyd & S., 1982) to cluster these 256-dimensional feature 
vectors and comparing the results against the ground truth of sequential typology 
labels yielded a 96% accuracy. Additionally, the clustering's relevance and 
precision are confirmed by an Adjusted Mutual Information score (Vinh et al., 
2010) of 0.95, reflecting a high degree of correspondence between the 
unsupervised clustering outcomes and the actual labels. This demonstrates that 
the SSL-extracted features inherently possess a self-clustered organization that 
significantly correlates with human-defined categories. 

Figure 2. Sequential typologies(left) and t-SNE visualization of K-means Clustering (right) 

To further interpret these self-organized features in a subsequent experiment, a 
Multi-Layer Perceptron (MLP) classifier was trained on these features to translate 
them into human-readable labels. The MLP outputs a 6-D probability vector, with 
the first three dimensions predicting the start type and the last three the end type. 
This classifier's high validation (99%) and test set (98%) accuracies, where 
accuracy implies correctly matching both start and end types, confirm its efficacy 
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in accurately categorizing sequential typologies from SSL-extracted features. 

4.2. EXPERIMENT II: COMPARATIVE ARCHITECTURAL CASE 

STUDY 

The second experiment aims to explore the influence of Roman architecture on 
Louis Kahn's designs, fine-tuning the SSL model and MLP classifier from the first 
experiment. This approach mirrors human cognitive processes, where new spatial 
experiences are interpreted based on prior knowledge. The strength of such a 
framework in this comparative study lies in its ability to analyse complex spatial 
relationships and discern nuanced design influences, tasks typically challenging 
for traditional methods. By adapting a framework that already has a baseline 
understanding of various spatial sequences, the models are equipped to interpret 
intricacies of real-world architectural spaces. 

The choice of case study was motivated by the well-documented influence of 
Roman architecture on Kahn's design philosophy. Kahn’s 1950 visit to Rome as 
a resident architect left a profound and well-known impact on his subsequent 
designs. This is evidenced in his own writings, accounts from his family and 
colleagues, and analyses by historical theorists (Barizza, n.d.; Rabifard, n.d.; 
Scully, 1992). The Indian Institute of Management (IIM) was chosen for its 
intentional design references to Roman ruins, aiming to invoke a sense of 
monumentality. Similarly, the Pantheon, Trajan’s Market, and Baths of Caracalla 
were acknowledged by Kahn as influential in his design process. The study aims 
to quantitatively analyse these interactions using the proposed framework, 
seeking insights into Kahn's design strategy and philosophy. 

Figure 3. Sampled Trajectories in Four Case Study Buildings 

The sampling strategy acknowledges the challenges of representing the universal 
average experience, given the subjectivity inherent in spatial perception. The 
criteria for selecting trajectories prioritized architectural significance, ensuring 
that each path chosen highlighted either unique design elements, areas frequently 
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engaged by visitors, or spaces with notable architectural details. The final 
selection of 12 trajectories was carefully curated to ensure that they were not only 
encompassing a spectrum of experiences but also provided the most valuable data 
for the study’s comparison objectives as shown in Figure 3. Each trajectory is 
simulated with 100 paths to enrich the dataset. 

The SSL model and MLP classifier were fine-tuned using the combination of 
typology dataset and a subset of the case study dataset. The selected subset, 
constituting 31% of the total case study dataset, included 5 trajectories with 
clearly distinguishable sequential types, carefully chosen to avoid ambiguous 
labels that might confound the model. This fine-tuning aimed to retain the model's 
foundational knowledge while adapting to the architectural complexities of the 
case study.  

Figure 4. Visualization of Output of MLP Classifier. Left is a nested scatter plot illustrating 

the predicted probabilities for 12 sampled trajectories across 9 sequential types. On the right, 

3D plots highlight the probability vectors for specific start and end types, connecting pairs of 

points for each building 

The fine-tuned models, with 96% validation accuracy on the combined dataset 
and 94% on the labelled case study subset, effectively grouped trajectories with 
similar sequence typologies in the case study dataset (Figure 4). Such a 
typological grouping is crucial for in-depth comparative studies, as it initially sorts 
sequences into similar typologies for further comparison of interest. Additionally, 
this approach highlights the framework's efficiency in processing large-scale 
datasets, a typically time-consuming and challenging task for manual analysis. In 
the 'exterior to exterior' category, the K-means clustering and nearest neighbour 
similarity analysis on the feature vectors revealed a notable similarity between the 
IIM and Trajan’s Market, while distinctly differentiated from the Pantheon, 
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Caracalla’s Baths, and a standard courtyard (Figure 5). This pattern suggests 
shared architectural elements such as terraces and colonnades in both buildings 
and the absence of arches in the Pantheon’s Plaza, exemplifying the framework’s 
ability to uncover nuanced connections not immediately apparent to human 
observers. By quantitatively assessing how IIM’s feature vector diverges from 
those of Roman buildings and a standard courtyard, the framework enables a data-
driven exploration of Kahn’s design choices, thereby complementing traditional 
qualitative analyses. 

Figure 5.t-SNE Visualization of K-means Clustering of ‘Exterior-to-Exterior’ Feature Vectors 

and Nearest Neighbour Similarity Analysis 

5. Conclusion

This research showcases a robust analytical pipeline effectively merging deep 
learning's computational pattern recognition with the detailed interpretation 
required in architectural studies. This research's contributions extend from 
enabling immediate comparative analysis to establishing a foundation for future 
methodological exploration. Moving forward, the aim is to enhance the spatial 
perception capabilities of the model by incorporating additional sensory channels 
beyond grayscale, such as integrating semantic segmentation or object detection 
layers. Further refinement of Isovist data resolution will allow for a more detailed 
understanding of architectural elements like ornamentation. Such enhancements 
will enable the direct visualization of correlations between the model's features 
and specific architectural elements, thereby greatly enriching the interpretive 
value. In addition, expanding the dataset and utilizing clustering algorithms will 
enable the quantification of common qualities in spatial experiences, such as 
‘monumentality’ in the case study experiment, thereby paving the way for a new 
paradigm in architectural analysis that bridges qualitative assessment with 
quantitative precision. 
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