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Abstract. Data integration and information enrichment pose 
significant challenges to the advancement of Performance-based 
Generative Design (PGD). One potential solution to these challenges is 
the utilization of Knowledge Graph (KG). However, the 
implementation of KG in PGD, particularly in leveraging expert 
knowledge to accelerate the process, remains an area that has not been 
thoroughly explored. In this research, we propose a PGD-KG schema 
to capture and represent the topological relationships and functionalities 
within PGD. We also introduce a method for automatically generating 
PGD-KG models from parametric design models enriched with 
semantic information. Additionally, we develop reasoning algorithms 
based on expert knowledge of sustainable design to facilitate automated 
performance evaluation. The effectiveness of the PGD-KG approach 
was demonstrated through its implementation in a design project, where 
the reasoning algorithms proved capable of significantly reducing the 
solution space in PGD by 88.50%, while still ensuring the inclusion of 
an adequate number of Pareto optimal solutions. This research 
contributes to the design acceleration by integration of expert 
knowledge, particularly sustainable design strategies, into PGD. 

Keywords.  Performance-based generative design, Knowledge graph, 
Reasoning algorithm, Building performance evaluation, Sustainable building design.  

1. Introduction 

The demand for green buildings has gained significant momentum, driven by the 
urgent need to alleviate the environmental impact of the built environment. As shown 
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by The MacLeamy Curve (Davis, 2011), the earlier stage in a project, the less costly it 
is to make a change. Hence, it is important to incorporate green performance during 
the early design stage of buildings. Early design is a complex task which involves 
multiple factors, e.g., building programs, constraints, parameters, and objectives. 
Performance-based generative design (PGD) (or performative computational 
architecture (Ekici et al., 2019)) is a powerful tool to mitigate the complexity of early 
design with the assistance of computational methods and artificial intelligence. In the 
current practices of PGD, architects create and manipulate a geometric model in 
parametric design tools (e.g., Rhino and Grasshopper). However, to conduct building 
performance evaluation, more information (e.g., materials and constructions) is needed 
beyond geometry (Negendahl, 2015). Although some tools (e.g., Ladybug Tools) have 
been developed to facilitate the information enrichment in the process of PGD, 
architects still need to collect and input the information manually or semi-automatically, 
which requires expert knowledge in building evaluation. Consequently, data 
integration and information enrichment are two important issues that hinder the 
acceleration process of PGD. 

A knowledge graph (KG) represents knowledge in a structured and interconnected 
manner, capturing the relationships between entities and properties among multiple 
domains (Ji et al., 2022). By providing a unified schema and semantic framework, KG 
enables seamless integration of diverse data sources (Pauwels et al., 2017). In addition, 
the graph-based representation of knowledge in KG enables automated reasoning, 
which can uncover implicit relationships and enrich the semantic information of the 
KG model (Pauwels et al., 2017). With these advantages, KG could provide a solution 
to the issues of data integration and information enrichment for PGD. In addition, 
several studies (Machairas et al., 2014; Su & Yan, 2015) have stated that expert 
knowledge can help accelerate PGD. For example, design knowledge from experts or 
architects could help minimize the size of the solution space (Machairas et al., 2014) 
and customize the optimization process (Su & Yan, 2015). However, how to 
implement KG to PGD and accelerate PGD with expert knowledge has not been fully 
studied yet. 

The purpose of this research is to develop a KG model for PGD and apply it to the 
process of PGD. Our specific goals are: 1) to design the KG schema for PGD (PGD-
KG) that can integrate data from multiple domains, 2) to propose the PGD-KG 
generation method from parametric design models with enriched semantics, 3) to 
integrate expert knowledge to accelerate PGD by developing PGD-KG-based 
reasoning algorithms for automatic performance evaluation. Finally, one detached 
house design project is selected as the illustrative example of the implementation of the 
PGD-KG, and performance of the PGD-KG in accelerated design is evaluated. 

2. Methodology 

2.1. PGD-KG SCHEMA 

Previously, we proposed an ontology model for building energy modelling (Wu et al., 
2023), which integrates four domains (weather, building, internal heat gain and Heating, 
Ventilation, and Air Conditioning (HVAC) system) based on the existing models, 
Brick Schema (Balaji et al., 2018) and Building Topology Ontology (BOT) 
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(Rasmussen et al., 2020). The KG model schema for PGD is developed by leveraging 
the previous ontology model (Wu et al., 2023), with necessary extensions implemented 
to comprehensively capture and represent the topological relations and functionalities 
in PGD. Figure 1 shows the overview of the PGD-KG schema that covers five key 

domains in PGD, including building, weather, internal heat gain, HVAC system, and 
regulation and strategy. The components beyond the existing ontology models (Brick 
Schema and BOT) are assigned a prefix pgd. 

Building is the important domain in the PGD-KG schema. The class bot:Site is 
assigned with the property pgd:has Area_m2 to support the calculation of site-area-
related indices, e.g., plot ratio. The class bot:Building stores the information on 
building types and building directions. The class bot:Space describes spatial zones, and 
stores the geometric information (ceiling heights, floor areas, volumes, etc.). The 
topology property pgd:hasAirFlow is assigned to the class bot:Space to describe the 
topology relation of airflow among spaces. Each bot:Space is connected with the class 
pgd:SpaceType that indicates the space’s function and the activity level of occupants 
in the space. The class bot:Element describes surfaces including building surfaces 
(walls, floors, roofs, ceilings, air walls, etc.), fenestration surfaces (windows, doors, 
etc.), and shading surfaces. Topology relations in a building surface contain the 
information on surface types, geometries (surface areas, vertex coordinates, normal 
vectors, etc.), boundary conditions (whether the surface is exposed to the outdoor 

Figure 1. PGD-KG schema 
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environment), constructions and materials (thermal properties, optical properties, etc.). 
Air walls are commonly adopted to describe large openings between two spaces in 
modelling software, e.g., EnergyPlus. In the PGD-KG schema, air walls are regarded 
as a kind of building surfaces with the construction AirBoundary, which is aligned with 
the setting in EnergyPlus. The topology relations in a fenestration surface and a shading 
surface are similar to the ones in a building surface but the material properties are 
different. Minor revisions of the components in the domains of weather, internal heat 
gain and HVAC system are made compared with the previous ontology model (Wu et 
al., 2023) and details of these components can be referred to Section 3.1 in Ref. (Wu et 
al., 2023). The graphs and files of the PGD-KG model can be found on 
https://github.com/GeorgeZWu/PGD_KG_Schema. 

2.2. PGD-KG MODEL GENERATION 

Figure 2 depicts the workflow of the PGD-KG model generation. Firstly, spaces and 
surfaces in parametric design models are translated into individuals under the classes 
bot:Space and bot:Element in the PGD-KG model. Secondly, properties of the spaces 
and surfaces, including volumes and floor areas of spaces, types, areas, vertex 
coordinates and normal vectors of surfaces, etc., are identified or calculated. 
Corresponding KG properties (pgd:hasVolume_m3, pgd:hasFloorArea_m2, 
pgd:hasSurfaceType, pgd:hasArea_m2, pgd:hasVertex1X_m, 
pgd:hasNormalVectorX_m, etc.) are generated. Thirdly, semantic information 
including weather, space type, etc. is translated into individuals under the classes 
pgd:Weather, pgd:SpaceType, etc. of the PGD-KG model. The semantic information 
is derived from default templates which could be reused in various projects, or the 
semantic information is manually input by designers for specific cases. Finally, 
knowledge inference is conducted based on the generated PGD-KG model, and 
boundary conditions and topology relations of airflow are supplemented to the PGD-
KG model. 

Figure 2. PGD-KG model generation from parametric design models and semantic enrichment. 
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2.3. REASONING FOR PERFROMANCE EVALUATION 

Figure 3 elaborates the extraction workflow of design strategies based on expert 
knowledge from text-based literature to machine-readable reasoning algorithms. 
Firstly, design strategies are summarized from the literature on sustainable building 
design. In this research, three design strategies (summarized in Table 1) are extracted 
from literature (Brown & DeKay, 2013; Heywood, 2019; Kwok & Grondzik, 2018). 
Secondly, the design strategies are translated into machine-readable algorithms that 
support cross-domain reasoning of the PGD-KG models. Table 2 shows one example 
of the reasoning algorithm in SPARQL for the number of nodes in the overall airflow 
path, the indicator of Strategy 2. 

Following the execution of the algorithms, the metrics for the three indicators can 
be derived. The sustainable performance of design cases can be evaluated based on the 
rankings of these indicators. To determine the number of selected cases, a 
hyperparameter called the threshold is introduced. For example, if the threshold is 40%, 
the cases with indicators ranking within the top 40% for all strategies will be chosen. 

Table 1. Design strategies derived from literature. 
 

Interpretation  Indicator  Performance 

1 The area of exterior envelopes should be as less as possible.  Shape factor  Cooling and 

heating 

2 The ventilation path should be sufficiently short, and the 

resistance should be sufficiently low. 

 Number of nodes in overall 

airflow path 

 Cooling 

3 The light-transmitting windows should be mainly directed to 

the south or north, and the light-transmitting windows on the 

south and north side should be sufficiently large. 

 Projection area of light-

transmitting windows on the 

south and north side 

 Daylighting 

and cooling 

Table 2. Reasoning for the number of nodes in overall airflow path. 

Algorithm 1 (in SPARQL): Reasoning for the number of nodes in overall airflow path. 

1 SELECT (COUNT(DISTINCT ?intermediateNode) AS ?nodeCount) 

2 WHERE { 

3        ?window1 rdf:type bot:Element . 

4        ?window1 pgd:hasSurfaceType "Window" . 

5        ?window1 pgd:hasOutsideBoundaryCondition "Outdoors" . 

6        ?window2 rdf:type bot:Element . 

7        ?window2 pgd:hasSurfaceType "Window" . 

8        ?window2 pgd:hasOutsideBoundaryCondition "Outdoors" . 

9        ?window1 pgd:hasAirFlow* ?intermediateNode . 

10        ?intermediateNode pgd:hasAirFlow* ?window2 . 

11        } 
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3. Illustrative Example 

3.1. INTRODUCTION OF THE DESIGN PROJECT 

A 2-storey detached house using prefabricated modular techniques in a pilot design 
study was selected as the illustrative example of the implementation of the PGD-KG. 
Figure 4 illustrates the modelling rule of the prefabricated modular detached house. 
The sizes and locations of the staircase and living rooms were settled according to the 
design constants (Table 3), while the positions and orientations of other prefabricated 
modular units varied among five slots (A, B, C, D and E). There were two directions 
(along the x-axis and y-axis of the building coordinate) of the prefabricated modular 
units in slot A, C and D, while the prefabricated modular units in slot B and E were 
only directed along the y-axis. Five kinds of module combination were allocated in the 
five slots according to the design variables (Table 3). The goal of the design project 
was to generate optimal layouts of the module combinations that minimize the cooling 
energy consumption and maximize the daylighting performance of the detached house. 

The implementation was programmed by Python. Firstly, the parametric design 
models of the detached house were developed using Python library rhino3dm, which 
offers geometric manipulation functions that can create and modify parametric Rhino 
3D models in Python. Secondly, the PGD-KG models were generated based on the 
parametric design model and enriched semantics. Thirdly, reasoning for performance 
evaluation based on the three design strategies was conducted. The Python library 
rdflib was adopted to construct the PGD-KG models and conduct reasoning for the 
performance evaluation. We studied the sizes of the solution spaces selected by the 
reasoning algorithms for performance evaluation under different thresholds (40%, 30%, 
20% and 10%) with three metrics: the ratio of selected solutions (the number of 
solutions selected by the reasoning algorithms divided by the total number of cases), 
the ratio of selected Pareto optimal solutions (the number of selected Pareto optimal 
solutions divided by the number of Pareto optimal solutions in the ground truth) and 
computational time reduction (compared with simulations of all the cases). In addition, 

Figure 3. Extraction of design strategies from text-based literature to machine-readable reasoning 
algorithm. 
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all the cases (7680 in total) were simulated by EnergyPlus and Radiance to obtain their 
performance metrics Annual Cooling Load (ACL) and Useful Daylight Illuminance 
(UDI) (Nabil & Mardaljevic, 2006) as the ground truth of  the performance. 

Table 3. Design parameters of the prefabricated modular detached house. 

Parameter Description Value 

Constant Wc Corridor width 1.2 m 

H Floor height 3.3 m 

Lx Living room width 3.0 m 

Ly Living room depth 4.8 m 

Sx Stairwell width 1.8 m 

Sy Stairwell depth 3.6 m 

Decision 

variable 

Sa Combination in slot A Range: [0, 4], step: 1 

0: Single bedroom (1F); 

1: Main bedroom (1F) + Kitchen (GF); 

2: Bathroom (1F) + Bathroom (GF); 

3: Single study (1F); 

4: Bedroom (1F) + Bedroom (GF). 

Sb Combination in slot B 

Sc Combination in slot C 

Sd Combination in slot D 

Se Combination in slot E 

Da Direction of the combination in slot A Range: [0, 1], step: 1 

0: along y-axis; 

1: along x-axis. 

Dc Direction of the combination in slot C 

Dd Direction of the combination in slot D 

O Orientation Range: [0,360°), step: 45° 

3.2. RESULTS AND DISCUSSION 

         

           

                        

             

                

    

               

            

       

                            

             
       

      

    

      

      

           

                

    

 
 
 
 

    

 
 
 
 

 
 
 
 

    

 
 
 
 

    

 
 
 
 

 
 
 
 

    

 
 
 
 

 
 
 
 

 

 

             

      

    
 

   

 

    

  
  

  

     

            

      

     

            

      

      

Figure 4. The modelling rule of the prefabricated modular detached house. 

401



ZHAOJI WU, ZHE WANG, JACK C. P. CHENG, ET AL. 

The PGD-KG models of all the design cases could be generated from their parametric 
design models with enriched semantics. Fig. 13 shows the classes, properties, 
individuals, and metrics of the PGD-KG model of one example (Case 6725) that is 
visualized in Protégé.  

Table 4. Performance of the PGD-KG reasoning under different thresholds. 

Threshold 

(%) 

Ratio of selected solutions 

(%) 

Ratio of selected Pareto optimal solutions 

(Selected / ground truth) 

Computational time 

reduction (%) 

40 31.04 8/8 64.73 

30 16.33 7/8 75.25 

20 11.50 7/8 75.21 

10 0 0/8 0 

Table 4 shows the performance of the PGD-KG reasoning and Figure 5 shows the 
selected solution spaces by the reasoning algorithms for performance evaluation under 
different thresholds (40%, 30%, 20% and 10%). As the threshold was more stringent 
(i.e., smaller in magnitude), the ratio of the selected solutions became smaller and the 
selected solution space contracted, orienting towards lower ACL and higher UDI 
values. When the threshold was equal to 40%, all the Pareto optimal solutions were 
included in the selected solution space. When the threshold was 30% and 20%, one 
Pareto optimal solution was not included. When the threshold was 10%, no solution 
was selected, showing that no case satisfies all the strategies if the threshold was too 
stringent. In the illustrative example, it took averagely 11.0 s to conduct performance 

Figure 5. Classes, properties, individuals, and metrics of the PGD-KG model of Case 6725, 
visualized in Protégé. 
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evaluation reasoning while it needed averagely 135 s to conduct performance 
simulation for each case. The reasoning algorithms can effectively narrow down the 
solution space in PGD while ensuring the inclusion of an adequate number of Pareto 
optimal solutions (≥ 87.5% in the illustrative example). The narrower solution space 
leads to less cases to be simulated and analysed, and hence time for simulations in PGD 
is reduced. 

(a) Threshold = 40 % (b) Threshold = 30 % 

(c) Threshold = 20 % (d) Threshold = 10 % 

Figure 6. Selected solution spaces under different thresholds. 

4. Conclusions 

In this research, we propose a PGD-KG schema that effectively captures and represents 
the topological relationships and functionalities within Performance-based Generative 
Design (PGD). Furthermore, we introduce a generation method that automatically 
generates PGD-KG models enriched with instances from parametric design models, 
incorporating semantic information. Additionally, we develop PGD-KG-based 
reasoning algorithms for automated performance evaluation. To evaluate the 
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effectiveness of the PGD-KG approach, we implemented it in a design project and 
observed that the reasoning algorithms successfully narrowed down the solution space 
in PGD, while ensuring the inclusion of a satisfactory number of Pareto optimal 
solutions. This research realizes the unsolved ideas proposed by the previous studies 
including minimizing solution spaces (Machairas et al., 2014) and customizing 
optimization processes (Su & Yan, 2015) by the automated integration of expert 
knowledge into PGD. However, only one design case is illustrated in this research. In 
the future, more design projects should be studied to further evaluate the efficacy and 
reliability of the proposed method. 
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