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Abstract. Despite the increasing popularity of off-the-shelf text-to-
image generative artificial intelligence models in early-stage 
architectural design practices, general-purpose models are challenged 
in domain-specific tasks such as generating buildings with the correct 
number of floors. We hypothesise that this problem is mainly caused by 
the lack of floor number information in standard training sets. To 
overcome the often-dodged problem in creating a text-image pair 
dataset large enough for finetuning the original model in design 
research, we propose to use BLIP method for both understanding and 
generation based automated labelling and captioning with online 
images. A small dataset of 25,172 text-image pairs created with this 
method is used to finetune an off-the-shelf Stable Diffusion model for 
10 epochs with affordable computing power. Compared to the base 
model with a less than 20% chance to generate the correct number of 
floors, the finetuned model has an over 50% overall chance for correct 
floor number and 87.3% change to control the floor count discrepancy 
within 1 storey. 

Keywords.  Text-to-Image Generation, Model Finetuning, Stable 
Diffusion, Automated Labelling.  

1. Introduction 
Architectural design practices have seen a recent rise in the use of text-to-image (T2I) 
generative AI (GAI) models due to their improved accessibility and performance. 
Commercially available cutting-edge T2I GAI tools such as DALL-E-2 (Ramesh et al., 
2022), MidJourney, and Stable Diffusion (Rombach et al., 2022) are based on large 
diffusion models that can generate high-quality images that provide design inspirations 
in only minutes and thus largely accelerate the design process.  

Typically, T2I GAIs have been adopted in early design phases such as ideation 
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(Stigsen et al., 2023), digital sketching (Ploennigs & Berger, 2023) and style 
exploration (Chen et al., 2023). However, off-the-shelf general models are less efficient 
in domain-specific tasks such as architectural design, creating inconsistency in 
communication through text and difficulty in interpreting the results (Turchi et al., 
2023). Domain-specific tasks often require extra field knowledge and respective 
descriptive language, leading to adaptation efforts of general models such as prompt-
engineering and context-specific tuning to gain more detailed control over specific 
aspects of the generative process.  

One of the persisting issues in adopting GAI models pre-trained on general purpose 
in early-stage architectural design is the generation of images with the correct number 
of floors. For example, when the prompt describes a building of three floors, very often 
the results generated by the off-the-shelf T2I GAI tools reflect a building with a wrong 
number of floors (Figure 1). Because prevailing building codes often associate the 
number of floors or building height to building typology, this problem limits the 
potential of application of general GAI models in early conceptualisation. 

Figure 1. From left to right: images generated by Stable Diffusion with prompts as "Rendering of a 
Modernism office building of x storeys in mountains in China" where x is 3, 4, and 7 respectively. 

To enhance the practicality of using large pre-trained T2I GAI models as an 
effective early-stage conceptual design tool for architecture with specific requirements, 
this research proposes a finetuning method using a small dataset to allow for 
professional specifications by generating images that match with the prompt more 
accurately, taking the number of floors as a case study. 

2. Background 
Since changing the number of floors in the prompts for off-the-shelf models does 
change the generated floor count only with unacceptable accuracy, we hypothesise that 
the poor performance is caused by the lack of floor count information in the model's 
training data. Hence, injecting text-image pairs with correct information to the model 
may be a solution. Therefore, a literature review is conducted in optimised methods for 
T2I GAI models to learn new knowledge for design purposes, and how training data 
can be prepared respectively. 

2.1. ADAPTING GAI FOR EARLY-STAGE DESIGN 

To better apply large pre-trained GAI models in specific downstream tasks, there have 
been several common methods. Overall, existing methods that require smaller training 
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data for design applications are often used in styling or personalisation while leaving 
most of the original model intact. For example, prompt engineering is a process to 
create and optimise input text to instruct the models to perform specific tasks, which 
can be used in better extracting knowledge from a GAI model to help design ideation 
(Deshpande, 2023). However, this method relies on the capability of the original model 
without injecting new knowledge. Another method to bridge these models with 
downstream tasks is Low-Rank Adaptation, or LoRA (Hu et al., 2021), which freezes 
the pretrained model weights and injects trainable rank decomposition matrices, greatly 
decreasing the number of trainable parameters.  LoRA can be useful in styling, 
applying texture and rendering, but with the original model left untouched, its ability 
to inject structural knowledge is limited (Kuru, 2023). Specifically targeted at diffusion 
models, Dreambooth allows users to inject custom objects with a few images as 
additional training data to an existing class (Ruiz et al., 2023). Text-inversion 
uses a pseudo word to embed a set of vectors for highly personalised results learned 
from only a few input images, but mostly of the same object (Gal et al., 2022).  

Yet domain-specific problems such as the counting of floors require that the 
original model generate the correct visual semantics with a new class of text inputs. 
This suggests finetuning the entire model, an approach of transfer learning, in which 
the weights of a pre-trained model are trained on new text-image data pairs 
(Goodfellow et al., 2016). Previous work in architectural design has successfully 
associated structured vocabulary in five classifications to architectural forms by 
finetuning U-Net of Stable-Diffusion v1.4 with 1001 manually labelled images (Kim, 
2023). Yet the process of such data curation is demanding, requiring both labour and 
professional consistency in reading the form and tedious preparation of graphically 
similar images all in isometric views.  

2.2. AUTOMATED DATA LABELLING 

As can be observed from the precedents above, one of the main reasons why finetuning 
a T2I GAI model through re-training is often avoided in domain-specific tasks is the 
lack of structured data, as re-training with trivial datasets often lead to severe loss of 
previous knowledge in a large model (Li et al., 2022). Since accessible online images 
often do not have associated captions with domain-specific knowledge, researches then 
must rely on either open datasets that are manually curated for general purposes, or find 
ways work with noisy data with expensive post-processing steps (Jia et al., 2021). 
However, recent developments in scaling pre-trained representations for T2I GAI 
models with noisy data have allowed us to consider a methodological framework with 
readily available resources. 

One of the commonly referred to state-of-the-art visual-language pretraining 
frameworks, BLIP, can perform a wide range of downstream tasks that are both 
understanding-based and generation-based (Li et al., 2022). Pretrained with datasets 
generated with CapFilt, BLIP has strong abilities in understanding images and generate 
texts that accurately match with the given images. For our task of floor counting with 
T2I GAI, the structure of standard training data needs to involve a text-image pair 
which involve both an understanding of an original image in the form of the number 
of floors, and a generated natural language caption. Therefore, the BLIP model can be 
a viable option based on our review. 
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3. Method 
Since domain-specific tasks in architectural design can vary from case to case 
performed by entities with varied computing power and labour, our goal of this early-
stage research is to establish a finetuning framework with publicly available data, 
automated labelling and captioning with relatively small dataset to enhance its 
accessibility.  

3.1. IMAGE DATA ACQUISITION, FILTERING AND LABELLING 

3.1.1. Data Acquisition 

To label images of architecture for the number of floors, source images should be 
exterior photos or renderings that cover the entire height of the building, and preferably 
the entire building volume to learn about the building typology as well. In addition, 
other than image resolution and clarity, photos of buildings in the dataset should cover 
a variety of styles, which helps the model generalise better, by covering a wider range 
of other descriptive language in the prompt. 

The 'Exterior Photography for Architects' image label on one of the widely accessed 
websites for architectural design, ArchDaily (ArchDaily, n.d.), provides an ideal source 
for our data acquisition demand. Despite some misplacements of interior, urban design 
and infrastructural projects, the label collects high-quality photos of building exteriors 
of designs with varied styles, including materials and typology. We acquired a raw 
dataset total of 33,269 images from this label for filtering and processing. 

3.1.2. Data Filtering 
As the raw dataset still contained images from which the number of floors cannot be 
counted, directly applying such data for caption labelling may adversely affect the 
performance of our subsequent model finetuning, causing the model to learn irrelevant 
features. Empirically, such photos are often associated with wrong project types or 
views. Therefore, we needed to filter such photos based on automated recognition of 
image subjects. 

Conventional image filtering methods often use pre-trained image classification 
models or object detection models. In our case, such methods may not be flexible 
enough considering the complexity of the background in architectural photos. In 
addition, since our filter standard was empirically based on observation, we needed a 
method that adapts to varied needs described in natural language.  

We used a zero-shot classification method based on BLIP to categorise and filter 
images. In our method, the BLIP model and its pre-processor were loaded to extract 
image and text features respectively, and then the similarity between them was 
calculated using the Softmax function. This way, the subject of the image can be 
converted into probabilities of pre-determined project types based on our initial 
empirical review of the dataset, with the highest probability category extracted as the 
final type of the subject. 

Based on preliminary visual analysis, we determined that subjects which need to be 
filtered out belong to "bridge", "city", "public square", " "top view" and "indoor space" 
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categories respectively.  As can be seen, this process was both targeted at unwanted 
perspectives and subject types. In the end, we finalised the categories of classification 
as "building", "bridge", "city", "public square", "top view", and "indoor space". Only 
images with a probability of being a building higher than 60% were retained. Through 
this method, we filtered out approximately 8k non-building images from the original 
data, and the final dataset size was 25172 images for labelling (Figure 2). 

Figure 2. Examples of filtered image types 

3.1.3. Data Labelling 
To create the text-image pair required for finetuning, the caption we associate with each 
image needs to both include our main training goal which is the number of floors, and 
some natural language description about the general scene to respond to other key 
words that may appear in the prompts.  

Based on BLIP's capability in understanding and generation-based tasks, this 
process could be automated. We used the BLIP-VQA (visual question answering) 
model to get the number of building floors by asking "How many floors does this 
building have?".  Then, we used the BLIP caption base model to generate an overall 
description of the image. As shown in Figure 3, for the image "192.jpg", the final output 
for the label was "a two-storey building. a white building with a staircase going up to 
it", which contains the number of floors and a description of the built environment. 
"20.jpg" is labelled as "a 10-storey building. a tall building with plants on the 
balconies", highlighting the number of floors and architectural details. 

Figure 3. Examples of understanding and generation based captioning tasks by BLIP. 
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This dual annotation method played a key role in our training set, providing the 
model with comprehensive semantic information while simultaneously accentuating 
the number of floors. Such labels help improve the model's understanding of the 
building structure and appearance, enhancing the model's generalisation capability. In 
the finetuning stage, these labels make it easier for the model to adjust weights to meet 
specific task requirements that utilise domain-specific knowledge, while reducing the 
ambiguity in the model's understanding of labels.  

3.2. MODEL FINETUNING 
As our research proposal targets at the practicality of injecting domain-specific 
knowledge for architectural practices, we prioritised accessible off-the-shelf models 
that require less computation power for finetuning. 

Diffusion models are a class of deep generative models often used in computer 
vision tasks including image generation based on two stages: a forward diffusion stage 
and a reverse diffusion stage. Compared to conventional diffusion models, Latent 
Diffusion Models (LDMs) execute the diffusion process on the latent instead of pixel 
space and subsequently require much less computation resource. Stable Diffusion is 
one of the latest versions of LDMs for T2I tasks accessible under the CreativeML Open 
RAIL-M license, and the Stable Diffusion v1-4 model was chosen for our finetuning 
process. 

With the 25172 text-image pairs, the finetuning was executed following Stable 
Diffusion's official finetuning documentation on a single NVIDIA GeForce RTX 4090 
graphics card for 10 epochs with a learning rate of 1e-5. The finetuning process took a 
total of 71 hours and 31 minutes. To further verify the efficiency of our proposed 
methodological framework, we also made an alternative finetuned model with the 
same data but for only 1 epoch as comparison.  

4. Results 

4.1. VALIDATION METHOD 

To test the performance of our finetuned model against the original model and 
empirically evaluate the difference between training epochs, we designed an evaluation 
process based on 1000 512px-by-768px image sets generated from the original Stable 
Diffusion model (referred to as the base model in the following text), the finetuned 
model with 1 epoch learning (1epoch), and the final finetuned model with 10 epochs 
(10epoch) with the same seeds and prompts.  

For each generation across all three models, a seed was randomly chosen images 
from our training data to generate the latent space of the models. Then, the prompt was 
automatically generated with randomly picked parameters which can describe the 
number of building floors, building style, and building type. The range of floor 
numbers was from 1 to 7, and the styles included "modern", "contemporary", 
"traditional", "industrial", "Art Deco", and "minimalist". Building types were chosen 
from "single-family house", "apartment building", "villa", "shopping mall", "retail 
store", "restaurant", "café", "office building", "museum", "art gallery", "library", 
"concert hall", "school building", "hospital", "historical building", and "church". The 
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prompt then was generated as a natural language text with standard descriptive 
structure, such as "A modern 2-storey single-family house". We also added key phrases 
to each prompt, namely "whole building" to designate the subject of the generated 
image, "human perspective" to set the view angle, and "façade with well-defined 
boundaries between each storey" to help generate subjects that are easy for humans to 
count the number of floors to quantify the performance. Due to our prompt generation 
method, resultant buildings in the generated images mostly have either a single volume 
or several volumes of similar heights, which affects our validation method described 
below. 

We then manually counted the number of floors on each generated image for 
different models respectively. If the subject has a changing number of floors in the 
image, only the largest portion of the building was taken into the final count. For 
instance, for the image on the left in Figure 4, the building changes from 9 floors to 8 
and a floor number of 8 was taken. In the image in the middle, the floor number of 2 
was taken. In rare cases where the façades generated could not clearly separate the 
floors visually, other evidence such as vertically stacked windows or openings will be 
used as a clue for estimation, such as in the image on the right in Figure 4. All counts 
were executed by graduate students who received their undergraduate training in 
architecture to ensure that industry knowledge was involved.  

Figure 4. Examples of floor count rules where professional judgement was applied. 

4.2. OVERALL MODEL PERFORMANCE 
We treated the number of floors given in the prompt as the ground truth, and calculated 
the overall percentage of correctness when the number of floors in the generated image 
matches the ground truth. We also calculated the average difference between the 
number of floors generated and the ground truth. To evaluate the models' tolerance, we 
noted the percentages of images when the floor count differs from ground truth by no 
more than 1 floor and by no more than 2 floors. The results for each model are shown 
in Table 1.  
Model Correct (%) Avg. floor difference Differ within 1 storey (%) Differ within 2 storeys (%) 

base 19.4 1.587 55 79.1 

1epoch 41.3 1.048 69.8 87.3 

10epoch 51.2 0.663 87.3 95.8 

Table 1. Overall model performance 

As the result shows, finetuned models exhibit majorly improved performance in 
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the number of floors. 19.4% of the images generated by the base model have the correct 
number of floors, while the percentage of correctness is increased to 41.3% after 1 
epoch of finetuning, and subsequently to 51.2% after 10 epochs. Improved 
performance is also observed in controlling the floor number gap between generated 
images and the prompt. The average floor difference is reduced from 1.587 in the base 
model to 0.663 in the finetuned 10epoch model.  In addition, 10epoch has a 95.8% 
chance of containing the floor difference within 2 storeys compared to 79.1% for the 
base model. A visual comparison of some generated results is shown in Figure 5. 

Figure 5. 4 sets of visual comparison between images generated by base (left) and 10epoch (right) 

4.3. PERFORMANCE BY NUMBER OF FLOORS 
To further analyse applicable use scenarios for the models, we compared the 

difference between 10epoch and base model for their performance by floor count. The 
result of the comparison is shown in Table 2 below: 

Floor 
Count 

Correct (%) Differ within 1 storey (%) Differ within 2 storeys (%) 

base 10epoch base 10epoch base 10epoch 

1 6.6 44.1 36.8 90.4 71.3 95.6 

2 28.6 73.5 73.6 92.9 91.4 100 

3 32.5 58.4 81.1 92.9 94.8 98.1 

4 24.6 54.6 79.2 83.8 94.6 96.2 

5 12.5 46.7 48 85.5 84.9 96.1 

6 9 34.6 40.4 81.4 75 94.2 

7 7.6 47.7 33.3 84.1 65.2 90.2 

Table 2. Base model and 10epoch performance comparison by floor counts 

As demonstrated, with the number of floor accuracy lower than 30% almost across 
all floor counts, the base model faces general challenges but particularly in single storey 
buildings and buildings higher than 5 floors. The model also struggles to contain the 
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difference in floor counts within 1 storey, which renders its usage as an ideation source 
in early-stage design limited, because buildings of 1 or 6 to 7 levels are often more 
sensitive to floor number changes due to planning and fire code regulations.  

Meanwhile, the 10epoch model exhibited a performative increase by 30% in almost 
every floor count category. The table demonstrates that despite the overall enhanced 
performance, the finetuned model has a similar pattern of performing better in 
generating buildings of 2 to 4 storeys. However, the finetuned model shows a more 
stable and elevated performance of containing the floor count difference within 1 
storey. This feature greatly improves the model's practicality in early-stage designs.  

5. Discussion 
Our research demonstrates the feasibility of using a small dataset (25172 images), 
automated labelling and limited computing power, it is possible to finetune a publicly 
accessible T2I GAI model for majorly improved performance in early-stage 
architectural design tasks, such as generating ideation images with the correct number 
of floors, which involve domain-specific knowledge. The result also partially supports 
our hypothesis, which is that one critical reason for current general purpose T2I GAI 
models to fail basic-level early-stage architectural design tasks is the lack of well-
structured training data that includes building information.  

Meanwhile, we understand that as early-stage research, our methodological 
framework has its limitations. Firstly, our evaluation for both the base model and the 
finetuned models does not necessarily reflect their actual performance in practice. The 
automated prompt generation script can create realistically improbable descriptions 
such as "a minimalist 1-storey hospital building" or "a contemporary 5-storey historical 
building". Therefore, both models, before and after finetuning, may perform better in 
actual architectural design practices. The other limitation caused by the prompt 
generation script is that it is unable to describe complex buildings with varied volume 
heights, which we intend to address in future research. 

In addition, we did not quantitatively validate the accuracy of the automatic 
labelling process, which may have led to less optimised training results. However, 
having observed that even a small dataset with automated labelling can dramatically 
increase the performance of the pre-trained model, we think that more could be done 
with well-structured captions that contain more comprehensive building information. 
Further research should expand on matching what can be visually learned and what 
should early-stage design address in generating architectural images for designers, so 
that training datasets for architectural AI can be crowd-sourced.  
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