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Abstract. In recent years, the advances in data science and Artificial 
Intelligence (AI) are disrupting all sectors, impacting the industry and 
academic fields. In the AEC sector, there have been a rising number of 
user-friendly "computational design services" generative and 
parameterised solutions driven by AI engines. However, if in one hand 
these services provide rapid solutions with minimal cognitive load, on 
the other hand, they obscure logical processes from computational 
design thinking, transforming them into black boxes and limiting the 
designer on making use of technology to create novel solutions. To 
overcome these challenges, the teaching of computational design 
thinking should be integrated in architecture education on 
undergraduate and master programs. This study conducts a critical 
literature review and proposes a framework to be implemented in 
architecture education, discussing the complexity involved in the 
learning process. The framework provides a layered approach that 
unfold the levels of abstraction of the nested black boxes of 
computational design and AI in an educational context. 
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1. Introduction and Problem Statement  

In recent years, data science and Artificial Intelligence (AI) have made significant 
strides, causing substantial disruptions across various industries. In the domain of 
architectural design, there has been a noticeable increase in the utilisation of third-party 
AI services for generating design proposals, with a growing number of market-driven 
encapsulation of “computational design services”, offering user-friendly generative 
and parameterised solutions driven by AI engines. These services provide rapid design 
solutions with minimal cognitive load, obscuring the underlying logical processes, 
potentially curtailing designers' freedom, flexibility, and deeper understanding 
regarding the design proposition, as the paradigm of black boxes (Flusser, 1985).  

Moreover, the role of designers concerning computational tools has been a subject 

 

– LEAVE THIS WHITE BOX ON PAGE 01!! – If it has moved, you can cut and paste it back to page 1, right click on the 

boundary and choose 'More Layout Options...' and then under 'Vertical', choose 'Absolute position' - 24 cm (below Page). 

ACCELERATED DESIGN, Proceedings of the 29th International Conference of the Association for Computer-
Aided Architectural Design Research in Asia (CAADRIA) 2024, Volume 3, 39-48. © 2024 and published by the
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.



V. CALIXTO AND J. CROFFI  
 

of extensive debate since the inception of this field in the 1970s (Mitchell 1975; 
Terzidis, 2006; Oxman, 2006; Burry, 2011; Carpo, 2017), up until the concept of 
computational designers emerged as digital toolmakers (Fischer, 2003; Burry, 2011). 
Nonetheless, architectural education continues to face challenges in accommodating 
the educational needs related to these debated topics (Oxman, 2008; Leitão et al., 2012; 
Celani & Vaz, 2012; Akbar et al., 2023). The integration of AI in the design process 
adds a further layer of complexity to this issue. Consequently, there is an urgent call to 
initiate discussions regarding the role of architectural education in addressing this 
demand. 

2. Theoretical Background 

During the early 1960s, the advent of the design methods movement initiated scholarly 
discussions aimed at fostering a more systematic comprehension of architectural 
design processes. The primary objective was to externalise these processes, aiming for 
greater complexity and the utilisation of computers to automate repetitive aspects of 
the design process (Celani & Vaz, 2012). Fast forward six decades, with an excess of 
fifty million hundred thousand transistors available as computational power (Moore, 
1972), the challenges associated with teaching computational design thinking persist. 
Moreover, new strata of complexity have begun to overlay and obscure the current 
landscape, driven by the emergence of data science and AI-powered tools that 
increasingly dominate the design process. These advancements obscure the underlying 
design steps by encapsulating them within nested black boxes (Glanville, 1982). 

The notion of a black box, crucial for understanding the current state of nested black 
boxes within computational design thinking education, warrants delineation. 
Subsequently, this discussion is followed by an examination of computational tools, 
practices, and process essential to the realm of computational design thinking. Finally, 
an overview is provided concerning the rise of data science and AI tools within the 
Architecture, Engineering, and Construction (AEC) domain. This approach aims to 
elucidate the intricate interplay and encasement of design processes within nested black 
boxes, reflecting the evolving scenario of computational design thinking education. 

2.1. BLACK BOXES 
The inception of the black box concept finds its origins in the realm of cybernetics 
during the mid-1950s, notably with Ashby's seminal work, "Introduction to 
Cybernetics" (Ashby, 1956). Ashby elucidates this concept by employing the canonical 
example of a child learning to manipulate a door handle to open a door, oblivious to 
the internal workings connecting their action (input) to the latch's movement (output). 
This example serves as a metaphor, illustrating that everything we perceive functions 
as a black box, and our role as observers involves interacting with these black boxes to 
formulate functional descriptions contained within them. 

Glanville (1985) subsequently expounded upon the process of "whiting" a black 
box, delineating it as the construction of a perceptible relationship between the input 
and output of a black box by an external observer. This observer maps the underlying 
structure, progressively enhancing their confidence in this description through iterative 
feedback loops between themselves and the black box. Glanville also notes that to a 
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second external observer interacting solely with the inputs and outputs of the initial 
system, comprised of the first observer and black box, this system also appears as a 
black box. This nested progression of black boxes and observers forms the bedrock of 
second-order cybernetics. 

Flusser (1985) also conceptualise black boxes through the description of an 
interaction between a photographer and a camera. Here, he defines the camera as an 
apparatus, derived from the Latin verb "apparare", signifying readiness or preparation, 
internally manipulating number-like symbols. The photographer, while unaware of the 
internal workings, manipulates the inputs and outputs of the camera to achieve the 
desired photographic outcome. Flusser suggests that as apparatuses proficiently control 
numerical symbols, mechanising the thinking, the human beings will become less 
competent to deal with it and will tend to rely on more apparatuses (Flusser, 1985). 

In a parallel vein, Bruno Latour defines black boxes as encapsulating scientific and 
technical processes, practices, and objects necessary for their operational success 
(Latour, 1987). Latour posits that when a sealed machine operates seamlessly, its users 
focus solely on its inputs and outputs, disregarding its intricate internal mechanisms. 
Consequently, as advancements in science and technology progress, the internal logic 
of these systems becomes increasingly opaque (Latour, 1987). 

Within the architectural design domain, black boxes have become entrenched in 
the discourse of computational design, encompassing both the practices and processes 
of computational design thinking and the objects represented by computational tools. 

This interpretation of the black box concept, forged from the interaction between 
apparatuses and humans, finds resonance in the perspective of designers engaging with 
computational design tools. 

2.2. COMPUTATIONAL DESIGN THINKING AND EDUCATION 
The discussion around architectural education integrating new computational 
technologies in the design process gained momentum during 80', 90', and early 2000', 
when computers started to become more accessible in most architecture schools 
(Oxman, 2006; Celani & Vaz 2012).  

To establish the critical relation of computational design thinking and black box 
systems, this paper categorises computational design thinking as computational tools, 
practices, and processes following based on the Latour's definition of black box 
(Latour, 1987). 

2.2.1. Computational design thinking as computational tools 
The emergence of visual programming languages, such as Generative Components and 
Grasshopper in the mid-of 2000' represented a rapid expanding of interest in 
computational thinking in architecture education, since visual programming languages 
has a shallow learning curve compared to textual scripting languages (Celani & Vaz 
2012), democratising computational thinking without the need of coding in textual 
programming languages (Akbar et al., 2023). However, even though visual 
programming languages represents an ideal approach to reduce cognitive load and 
smoothing the slope of cognitive barriers (Aish & Hanna, 2017), it also represents 
challenges related to black box encapsulations of functions and algorithms, as a 
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shortcut that obscures computational design thinking steps in favour of the promptness 
of results, which can mask the structure of foundational concepts of generative design 
(Fischer & Herr, 2001), steps of mathematical thinking (Burry & Burry 2010), and 
canonical structures of computational thinking as recursion and loops.  

The concepts of computational design or the medium in where we operate through 
computational design thinking can be represented in three models of generative 
systems, iconic, analogue, and symbolic (Mitchell, 1975) at different levels of 
abstraction (Celani & Vaz 2012). Iconic models visually represent architectural forms 
and can be represented as direct parametric relations in 3D software, while analogue 
models use analogous properties and can be represented as visual programming 
languages, and symbolic models employ symbolic operations and can be represented 
through textual programming languages (Celani & Vaz, 2012). Novice architecture 
students may achieve superior results using visual programming languages. 
Nevertheless, the application of these languages is constrained to parametric 
exploration in the absence of a foundation in textual programming. In contrast, 
scripting languages offer a broader scope, allowing for the development of 
sophisticated generative design methodologies, including the implementation of 
recursive rule application. Moreover, these scripting languages can be seamlessly 
integrated with visual programming elements, thereby enhancing interactivity, and 
enabling real-time outcomes (Celani & Vaz, 2012). 

If in one hand the encapsulation of functions and algorithms obscures 
computational design thinking, on the other hand the abstractions of the medium 
utilised can create abstraction barriers, acting as another layer in the black box context.  

Abstraction barriers is a concept defined as the minimal set of novel abstractions 
that must be comprehended before utilising a system. (Green & Blackwell 1998). 
According to Aish (2017), an abstraction evolves into a barrier when users are 
compelled to grasp it before recognising its utility or relevance to their needs. In the 
context of computational design tools, the choice of the platform utilised to develop 
parametric systems can represent different abstraction levels, influencing in its learning 
curve (Aish & Hanna, 2017).  

Besides the medium of communication in which the computational design thinking 
works, there are concerns platform dependency as part of the design process, obliging 
learners to follow software-dependent workflows (Akbar et al., 2023), which tend to 
be proprietary pieces of software that does not provide the freedom for the user to run 
for any purpose, study and adapt for his own needs, redistribute, and share the 
improvements with a broader community (Stallman, 2002). The software-dependent 
workflows based on proprietary pieces of software restricts the access of the functions 
and algorithms that compound the parametric tools, consequently, represents an 
additional layer of the black box system that obscures computational design thinking 
as computational tools. 

2.2.2. Computational design thinking as practices 
Negroponte (1975) advocated for the importance of fostering direct engagement 
between designers and computers in the design process, emphasising the significance 
of a collaborative human-machine interface. He delineated this approach 
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(computation) as divergent from "computerisation", characterising it as a procedural 
system centred on batch input-output computation for data processing (Negroponte, 
1975). Later, Terdizis (2006) further developed the concepts of computerisation and 
computation defining its boundaries, being the first a design practice that typically uses 
computers to design as a literal translation of the paper-based design process to the 
computer screen, and the second the partnership between designers and computers in 
exploring computer power to extend designers capabilities and creativity. In this 
context, computing is not just seen as a tool for representing or creating machines, but 
rather as a platform for thinking and designing (Carpo, 2018). 

To explore this partnership with the computer, the practices of computational 
design thinking have been explored by a set of computational approaches, such as, 
parametric design, generative design, and algorithm design. Caetano et. al (2019) 
extensively discussed these computational design thinking approaches proposing a 
taxonomy that defines parametric design as a design approach based on the use of 
parameters to describe sets of designs; generative design, as a design approach that uses 
algorithms to generate designs; and algorithm design, as a subset of generative design 
that has an identifiable correlation between algorithms and its outcomes (Caetano et. 
al, 2019). 

Despite the increasing adoption of computational design in schools worldwide, 
concerns arise regarding its integration into the curriculum. Veloso and Krishnamurti 
(2019) discuss the rise of scripting and visual programming languages in design 
systems, which externalises design instructions and shifts designers away from 
traditional architectural drawing practices, fracturing the black box. However, the 
prevalence of aesthetic disputes and non-standard forms in digital design replaces the 
subjective of architectural drawings with digital variations, keeping the culture of 
studio design critic that traditionally subjectively measure design success, exacerbating 
the opacity of the design process. Another concern is grounded in the observation that 
many universities are focusing on teaching digital tools and plugins to rapid enable 
students in the proficiency of "operating" a set of architecture design tools in simple 
design tasks of limited architectural complexity, without the high-order thinking 
(Schneider, 2001), showing that encapsulation of ready-to-use computational tools into 
black boxes can drive to design process to impoverishing of computational design 
thinking if a solid foundation on computational thinking is not provided (Gaudillière, 
2020). Following a different perspective, Gardner et al. (2020) argue that the 
philosophical tradition of pragmatism provides the for the perspective computational 
design thinking that "emergent and evolutionary behaviour is acceptable; that the black 
box process can be trusted as long as the practical goals are realised". These different 
valid positions shows that still no consensus on the degree to which the designer student 
should have regarding the internal logic of the process of the black boxes of 
computational design thinking in their practice, or in other words, what tonality of 
"grey" these boxes should be. 

2.2.3. Computational design thinking as processes 

Mitchell (1975) recognises design problem as a special kind of problem-solving 
process that involves "wicked problems" (Cross et al. 1984), due to some design 
variables being inversely proportional; for example, the control of illumination against 
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the control of radiation in a room. “Wicked problems” are complex and multifaceted 
issues that are difficult to understand or solve due to their many interconnected 
components and lack of clear definitions (Rittel & Webber 1973), this category of 
problem present a particular challenge due to the creative and iterative nature of the 
design process.  

Kelly and Gero (2021) argue that complex problems necessitate both design and 
computational thinking, as they offer complementary approaches. They suggest 
teaching these methods together, proposing an ontology that integrates them. In 
computational design thinking, designers must transition from a subjective 
understanding of the problem to an analytical view. Oxman (2006) introduces a schema 
outlining interactions between designers and computers in digital design, categorising 
various models. Additionally, Oxman (2017) proposes the Parametric Design Thinking 
(PDT) framework, arguing that scripting provides a new way of design thinking, being 
a fundamental component in of knowing in models during design process, and the 
reflection of the designers relates to their ability to understand and control the 
computational and scripting tools. The act of scripting gives the freedom for the 
designer to customise and reconfigure software behaviours, fitting to their way of 
thinking and working (Burry, 2011). Therefore, scripting becomes one of the ways that 
computational designers can interact with one of the layers of the black box system, 
whitening the process of computational design thinking, and becomes a critical skill in 
an educational context.  

2.3. EMERGENCE OF DATA SCIENCE AND AI TOOLS IN ARCHITEC-
TURE  

Recent advancements in Data Science and Artificial Intelligence (AI) are 
revolutionising various industries, fostering improved interactions between humans 
and machines. In Architecture, Engineering, and Construction (AEC), these 
disruptions are evident in research and industry, with growing interest in computational 
design methods and AI-driven design proposals. This shift signifies a move towards a 
second digital era, characterised by big data and increasing of computational power for 
form generation based on search and simulation methods (Carpo, 2017). 

Computational skills, once cutting-edge, are now mainstream (Basarir, 2022). AI 
advancements, like language models and Generative Adversarial Networks (GANs), 
are pushing design boundaries. Techniques like semantic segmentation and Graph 
Machine Learning further explore AI's potential in architecture and design (del Campo 
& Leach, 2022; Ma et al., 2021; Alymani et al., 2017). However, if the scenario is 
accelerated for both industry and research, the architecture educational system does not 
overcome the challenges regarding a seamlessly integration of computational design 
thinking in the curriculum (Kelly & Gero, 2021), and the emergence of the new AI and 
Data Science methods expands this gap, requiring deeper layers of computational 
design thinking to be used as integral part of the design process, and not only as a ready-
to-use true black AI services black-boxes. Inevitably, the new generation of 
architecture students are already making use ready-to-use AI services to assist their 
assignments, generating renders through MidJourney and Stability.ai, or architectural 
memorials using ChatGPT, as mediums of "computerisation", but the challenges on 
the "computation" side pushes the question on how the current architecture education 
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will tackle the challenge of integrating computational design thinking in the 
architecture design curriculum,  including the new advancements in the field of AI and 
Data science remains to be addressed. 

3. An educational framework for computational design thinking black 
boxes. 
To address the critical gap of the multifaceted impact of emergent Data Science and AI 
technologies on computational design education and investigating the role of 
architecture education in preparing future computational designers in consideration to 
emerging AI tools, this study, first, maps practices, processes, and tools according to 
its level of obscurity and encapsulation of complexity as a black box system as 
presented in (Figure 1).  

Figure 1. Computational design thinking black boxes framework  

The proposed framework categorises computational design as computational tools, 
practices, and processes, using the Latour's definition of black boxes. 

3.1. COMPUTATIONAL TOOLS 
Computational tools are categorised based on medium and tools accessibility. The 
medium describes how the tool operates, ranging from black-box obscurity in non-
programming, visual programming, and textual programming, with increasing levels 
of abstraction while concealing internal logic. Tools accessibility varies from closed-
source "click-the-button" proprietary tools to open-source solutions allowing 
investigation and modification of source code. Grey solutions in the middle ground 
combine proprietary software with open-source plugins, exemplified by Rhino 3D-
Grasshopper (Proprietary) and Ladybug Tools plugins (Open Source). 

3.2. PRACTICES       
Practices of computational design thinking encompass various computational 
approaches, ranging from basic computerisation that merely replicates or accelerates 
traditional tasks without improving design processes, to computational practices where 
creativity and innovation are actively fostered through a collaborative human-machine 
interaction through computational methods, enhancing the design process. 

3.3. PROCESSES 

Processes are categorised into reasoning and interaction. The reasoning spectrum 
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illustrates how the problem-solving process is approached, ranging from subjective 
understanding in design thinking to analytical interpretation in computational thinking. 
Interaction delineates how designers communicate with the design, ranging from 
implicit processes driven by subjectivity to explicit, systematic decision-making and 
communication. 

3.4. AN LAYERED APPROACH FOR COMPUTATIONAL DESIGN/AI ED-
UCATION 
The framework proposes a layered approach to education for architecture students, 
delineated in Figure 2, targeting the intricate layers of computational design thinking 
black boxes. This approach is structured around the medium, representing the interface 
for students' design tasks and enabling practices and processes. The framework 
suggests using the exemplified computational design and AI tools to introduce 
computational design thinking in education, gradually delving into black box 
abstraction levels. This incremental approach aims to avoid creating abstraction 
barriers and gradually build foundational practices and processes. Each tool, practice, 
and process overlap with the previous step, facilitating the learning process. By 
teaching computational design thinking and AI-driven education concurrently at 
similar abstraction levels, the curriculum enhances both contexts, providing a robust 
foundation for students.  

Figure 2. An educational framework for computational design and AI 
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4. Discussion and Conclusion 
This study proposes a layered framework for education of undergraduate and master 
architecture programs. Deepening into the layers gradually allow students to absorb 
and process the information in a more seamlessly manner, building a solid foundation 
towards the next layers of complexity. It can also keep the students engaged in learning 
and deepening their level of understanding towards more complex layers. If high 
complex subjects are introduced too early during the learning process, it can make the 
students to lose interest and withdraw. 

Deepening the understanding of complex black-box layers without a grasp of 
foundational concepts built upon earlier steps can introduce abstraction barriers, 
impeding students' progress. Hence, future studies might benefit from concentrating on 
achieving a balanced approach between black and white boxes, facilitating a smoother 
learning process through real-world case studies in educational scenarios. 

In an optimal scenario, students should receive education aimed at attaining at least 
the initial level of proficiency in visual programming layer. This would provide them 
with a basic understanding of computational design thinking, which encompasses 
computational design  and AI, providing them the foundational skill to investigate the 
subject independently further. However, in an ideal scenario, students would strive to 
achieve mastery in the highest level of visual programming, thus establishing a solid 
foundation to effectively control computational design and AI tools. In this context, 
students would possess the necessary knowledge to utilise these tools actively in 
generating solutions, rather than merely relying on pre-packaged third-party tools. By 
establishing these foundational skills, students can progress towards tackling more 
advanced design challenges, utilising their acquired knowledge for research, tooling, 
or software development. 

However, once they achieve deeper levels of black box abstractions, they may 
become contributor to develop encapsulated tools for novices, restarting the cycles, and 
pushing it back to the black box. 
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