

BACK TO BLACK BOXES?

An Urgent Call for Discussing the Impacts of the Emergent AI-Driven Tools in the
Architecture Design Education

VICTOR CALIXTO1 and JULIANA CROFFI2
1 Monash University, 2The University of Adelaide
1victor.calixto@monash.edu, 0000-0003-2793-1916
2juliana.crofficalixto@adelaide.edu.au, 0000-0002-5698-9407

Abstract. In recent years, the advances in data science and Artificial
Intelligence (AI) are disrupting all sectors, impacting the industry and
academic fields. In the AEC sector, there have been a rising number of
user-friendly "computational design services" generative and
parameterised solutions driven by AI engines. However, if in one hand
these services provide rapid solutions with minimal cognitive load, on
the other hand, they obscure logical processes from computational
design thinking, transforming them into black boxes and limiting the
designer on making use of technology to create novel solutions. To
overcome these challenges, the teaching of computational design
thinking should be integrated in architecture education on
undergraduate and master programs. This study conducts a critical
literature review and proposes a framework to be implemented in
architecture education, discussing the complexity involved in the
learning process. The framework provides a layered approach that
unfold the levels of abstraction of the nested black boxes of
computational design and AI in an educational context.

Keywords. Computational Design Thinking, Architecture Education,
Black Box, AI.

1. Introduction and Problem Statement

In recent years, data science and Artificial Intelligence (AI) have made significant
strides, causing substantial disruptions across various industries. In the domain of
architectural design, there has been a noticeable increase in the utilisation of third-party
AI services for generating design proposals, with a growing number of market-driven
encapsulation of “computational design services”, offering user-friendly generative
and parameterised solutions driven by AI engines. These services provide rapid design
solutions with minimal cognitive load, obscuring the underlying logical processes,
potentially curtailing designers' freedom, flexibility, and deeper understanding
regarding the design proposition, as the paradigm of black boxes (Flusser, 1985).

Moreover, the role of designers concerning computational tools has been a subject

– LEAVE THIS WHITE BOX ON PAGE 01!! – If it has moved, you can cut and paste it back to page 1, right click on the

boundary and choose 'More Layout Options...' and then under 'Vertical', choose 'Absolute position' - 24 cm (below Page).

ACCELERATED DESIGN, Proceedings of the 29th International Conference of the Association for Computer-
Aided Architectural Design Research in Asia (CAADRIA) 2024, Volume 3, 39-48. © 2024 and published by the
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

V. CALIXTO AND J. CROFFI

of extensive debate since the inception of this field in the 1970s (Mitchell 1975;
Terzidis, 2006; Oxman, 2006; Burry, 2011; Carpo, 2017), up until the concept of
computational designers emerged as digital toolmakers (Fischer, 2003; Burry, 2011).
Nonetheless, architectural education continues to face challenges in accommodating
the educational needs related to these debated topics (Oxman, 2008; Leitão et al., 2012;
Celani & Vaz, 2012; Akbar et al., 2023). The integration of AI in the design process
adds a further layer of complexity to this issue. Consequently, there is an urgent call to
initiate discussions regarding the role of architectural education in addressing this
demand.

2. Theoretical Background

During the early 1960s, the advent of the design methods movement initiated scholarly
discussions aimed at fostering a more systematic comprehension of architectural
design processes. The primary objective was to externalise these processes, aiming for
greater complexity and the utilisation of computers to automate repetitive aspects of
the design process (Celani & Vaz, 2012). Fast forward six decades, with an excess of
fifty million hundred thousand transistors available as computational power (Moore,
1972), the challenges associated with teaching computational design thinking persist.
Moreover, new strata of complexity have begun to overlay and obscure the current
landscape, driven by the emergence of data science and AI-powered tools that
increasingly dominate the design process. These advancements obscure the underlying
design steps by encapsulating them within nested black boxes (Glanville, 1982).

The notion of a black box, crucial for understanding the current state of nested black
boxes within computational design thinking education, warrants delineation.
Subsequently, this discussion is followed by an examination of computational tools,
practices, and process essential to the realm of computational design thinking. Finally,
an overview is provided concerning the rise of data science and AI tools within the
Architecture, Engineering, and Construction (AEC) domain. This approach aims to
elucidate the intricate interplay and encasement of design processes within nested black
boxes, reflecting the evolving scenario of computational design thinking education.

2.1. BLACK BOXES
The inception of the black box concept finds its origins in the realm of cybernetics
during the mid-1950s, notably with Ashby's seminal work, "Introduction to
Cybernetics" (Ashby, 1956). Ashby elucidates this concept by employing the canonical
example of a child learning to manipulate a door handle to open a door, oblivious to
the internal workings connecting their action (input) to the latch's movement (output).
This example serves as a metaphor, illustrating that everything we perceive functions
as a black box, and our role as observers involves interacting with these black boxes to
formulate functional descriptions contained within them.

Glanville (1985) subsequently expounded upon the process of "whiting" a black
box, delineating it as the construction of a perceptible relationship between the input
and output of a black box by an external observer. This observer maps the underlying
structure, progressively enhancing their confidence in this description through iterative
feedback loops between themselves and the black box. Glanville also notes that to a

40

BACK TO BLACK BOXES?

second external observer interacting solely with the inputs and outputs of the initial
system, comprised of the first observer and black box, this system also appears as a
black box. This nested progression of black boxes and observers forms the bedrock of
second-order cybernetics.

Flusser (1985) also conceptualise black boxes through the description of an
interaction between a photographer and a camera. Here, he defines the camera as an
apparatus, derived from the Latin verb "apparare", signifying readiness or preparation,
internally manipulating number-like symbols. The photographer, while unaware of the
internal workings, manipulates the inputs and outputs of the camera to achieve the
desired photographic outcome. Flusser suggests that as apparatuses proficiently control
numerical symbols, mechanising the thinking, the human beings will become less
competent to deal with it and will tend to rely on more apparatuses (Flusser, 1985).

In a parallel vein, Bruno Latour defines black boxes as encapsulating scientific and
technical processes, practices, and objects necessary for their operational success
(Latour, 1987). Latour posits that when a sealed machine operates seamlessly, its users
focus solely on its inputs and outputs, disregarding its intricate internal mechanisms.
Consequently, as advancements in science and technology progress, the internal logic
of these systems becomes increasingly opaque (Latour, 1987).

Within the architectural design domain, black boxes have become entrenched in
the discourse of computational design, encompassing both the practices and processes
of computational design thinking and the objects represented by computational tools.

This interpretation of the black box concept, forged from the interaction between
apparatuses and humans, finds resonance in the perspective of designers engaging with
computational design tools.

2.2. COMPUTATIONAL DESIGN THINKING AND EDUCATION
The discussion around architectural education integrating new computational
technologies in the design process gained momentum during 80', 90', and early 2000',
when computers started to become more accessible in most architecture schools
(Oxman, 2006; Celani & Vaz 2012).

To establish the critical relation of computational design thinking and black box
systems, this paper categorises computational design thinking as computational tools,
practices, and processes following based on the Latour's definition of black box
(Latour, 1987).

2.2.1. Computational design thinking as computational tools
The emergence of visual programming languages, such as Generative Components and
Grasshopper in the mid-of 2000' represented a rapid expanding of interest in
computational thinking in architecture education, since visual programming languages
has a shallow learning curve compared to textual scripting languages (Celani & Vaz
2012), democratising computational thinking without the need of coding in textual
programming languages (Akbar et al., 2023). However, even though visual
programming languages represents an ideal approach to reduce cognitive load and
smoothing the slope of cognitive barriers (Aish & Hanna, 2017), it also represents
challenges related to black box encapsulations of functions and algorithms, as a

41

V. CALIXTO AND J. CROFFI

shortcut that obscures computational design thinking steps in favour of the promptness
of results, which can mask the structure of foundational concepts of generative design
(Fischer & Herr, 2001), steps of mathematical thinking (Burry & Burry 2010), and
canonical structures of computational thinking as recursion and loops.

The concepts of computational design or the medium in where we operate through
computational design thinking can be represented in three models of generative
systems, iconic, analogue, and symbolic (Mitchell, 1975) at different levels of
abstraction (Celani & Vaz 2012). Iconic models visually represent architectural forms
and can be represented as direct parametric relations in 3D software, while analogue
models use analogous properties and can be represented as visual programming
languages, and symbolic models employ symbolic operations and can be represented
through textual programming languages (Celani & Vaz, 2012). Novice architecture
students may achieve superior results using visual programming languages.
Nevertheless, the application of these languages is constrained to parametric
exploration in the absence of a foundation in textual programming. In contrast,
scripting languages offer a broader scope, allowing for the development of
sophisticated generative design methodologies, including the implementation of
recursive rule application. Moreover, these scripting languages can be seamlessly
integrated with visual programming elements, thereby enhancing interactivity, and
enabling real-time outcomes (Celani & Vaz, 2012).

If in one hand the encapsulation of functions and algorithms obscures
computational design thinking, on the other hand the abstractions of the medium
utilised can create abstraction barriers, acting as another layer in the black box context.

Abstraction barriers is a concept defined as the minimal set of novel abstractions
that must be comprehended before utilising a system. (Green & Blackwell 1998).
According to Aish (2017), an abstraction evolves into a barrier when users are
compelled to grasp it before recognising its utility or relevance to their needs. In the
context of computational design tools, the choice of the platform utilised to develop
parametric systems can represent different abstraction levels, influencing in its learning
curve (Aish & Hanna, 2017).

Besides the medium of communication in which the computational design thinking
works, there are concerns platform dependency as part of the design process, obliging
learners to follow software-dependent workflows (Akbar et al., 2023), which tend to
be proprietary pieces of software that does not provide the freedom for the user to run
for any purpose, study and adapt for his own needs, redistribute, and share the
improvements with a broader community (Stallman, 2002). The software-dependent
workflows based on proprietary pieces of software restricts the access of the functions
and algorithms that compound the parametric tools, consequently, represents an
additional layer of the black box system that obscures computational design thinking
as computational tools.

2.2.2. Computational design thinking as practices
Negroponte (1975) advocated for the importance of fostering direct engagement
between designers and computers in the design process, emphasising the significance
of a collaborative human-machine interface. He delineated this approach

42

BACK TO BLACK BOXES?

(computation) as divergent from "computerisation", characterising it as a procedural
system centred on batch input-output computation for data processing (Negroponte,
1975). Later, Terdizis (2006) further developed the concepts of computerisation and
computation defining its boundaries, being the first a design practice that typically uses
computers to design as a literal translation of the paper-based design process to the
computer screen, and the second the partnership between designers and computers in
exploring computer power to extend designers capabilities and creativity. In this
context, computing is not just seen as a tool for representing or creating machines, but
rather as a platform for thinking and designing (Carpo, 2018).

To explore this partnership with the computer, the practices of computational
design thinking have been explored by a set of computational approaches, such as,
parametric design, generative design, and algorithm design. Caetano et. al (2019)
extensively discussed these computational design thinking approaches proposing a
taxonomy that defines parametric design as a design approach based on the use of
parameters to describe sets of designs; generative design, as a design approach that uses
algorithms to generate designs; and algorithm design, as a subset of generative design
that has an identifiable correlation between algorithms and its outcomes (Caetano et.
al, 2019).

Despite the increasing adoption of computational design in schools worldwide,
concerns arise regarding its integration into the curriculum. Veloso and Krishnamurti
(2019) discuss the rise of scripting and visual programming languages in design
systems, which externalises design instructions and shifts designers away from
traditional architectural drawing practices, fracturing the black box. However, the
prevalence of aesthetic disputes and non-standard forms in digital design replaces the
subjective of architectural drawings with digital variations, keeping the culture of
studio design critic that traditionally subjectively measure design success, exacerbating
the opacity of the design process. Another concern is grounded in the observation that
many universities are focusing on teaching digital tools and plugins to rapid enable
students in the proficiency of "operating" a set of architecture design tools in simple
design tasks of limited architectural complexity, without the high-order thinking
(Schneider, 2001), showing that encapsulation of ready-to-use computational tools into
black boxes can drive to design process to impoverishing of computational design
thinking if a solid foundation on computational thinking is not provided (Gaudillière,
2020). Following a different perspective, Gardner et al. (2020) argue that the
philosophical tradition of pragmatism provides the for the perspective computational
design thinking that "emergent and evolutionary behaviour is acceptable; that the black
box process can be trusted as long as the practical goals are realised". These different
valid positions shows that still no consensus on the degree to which the designer student
should have regarding the internal logic of the process of the black boxes of
computational design thinking in their practice, or in other words, what tonality of
"grey" these boxes should be.

2.2.3. Computational design thinking as processes

Mitchell (1975) recognises design problem as a special kind of problem-solving
process that involves "wicked problems" (Cross et al. 1984), due to some design
variables being inversely proportional; for example, the control of illumination against

43

V. CALIXTO AND J. CROFFI

the control of radiation in a room. “Wicked problems” are complex and multifaceted
issues that are difficult to understand or solve due to their many interconnected
components and lack of clear definitions (Rittel & Webber 1973), this category of
problem present a particular challenge due to the creative and iterative nature of the
design process.

Kelly and Gero (2021) argue that complex problems necessitate both design and
computational thinking, as they offer complementary approaches. They suggest
teaching these methods together, proposing an ontology that integrates them. In
computational design thinking, designers must transition from a subjective
understanding of the problem to an analytical view. Oxman (2006) introduces a schema
outlining interactions between designers and computers in digital design, categorising
various models. Additionally, Oxman (2017) proposes the Parametric Design Thinking
(PDT) framework, arguing that scripting provides a new way of design thinking, being
a fundamental component in of knowing in models during design process, and the
reflection of the designers relates to their ability to understand and control the
computational and scripting tools. The act of scripting gives the freedom for the
designer to customise and reconfigure software behaviours, fitting to their way of
thinking and working (Burry, 2011). Therefore, scripting becomes one of the ways that
computational designers can interact with one of the layers of the black box system,
whitening the process of computational design thinking, and becomes a critical skill in
an educational context.

2.3. EMERGENCE OF DATA SCIENCE AND AI TOOLS IN ARCHITEC-
TURE

Recent advancements in Data Science and Artificial Intelligence (AI) are
revolutionising various industries, fostering improved interactions between humans
and machines. In Architecture, Engineering, and Construction (AEC), these
disruptions are evident in research and industry, with growing interest in computational
design methods and AI-driven design proposals. This shift signifies a move towards a
second digital era, characterised by big data and increasing of computational power for
form generation based on search and simulation methods (Carpo, 2017).

Computational skills, once cutting-edge, are now mainstream (Basarir, 2022). AI
advancements, like language models and Generative Adversarial Networks (GANs),
are pushing design boundaries. Techniques like semantic segmentation and Graph
Machine Learning further explore AI's potential in architecture and design (del Campo
& Leach, 2022; Ma et al., 2021; Alymani et al., 2017). However, if the scenario is
accelerated for both industry and research, the architecture educational system does not
overcome the challenges regarding a seamlessly integration of computational design
thinking in the curriculum (Kelly & Gero, 2021), and the emergence of the new AI and
Data Science methods expands this gap, requiring deeper layers of computational
design thinking to be used as integral part of the design process, and not only as a ready-
to-use true black AI services black-boxes. Inevitably, the new generation of
architecture students are already making use ready-to-use AI services to assist their
assignments, generating renders through MidJourney and Stability.ai, or architectural
memorials using ChatGPT, as mediums of "computerisation", but the challenges on
the "computation" side pushes the question on how the current architecture education

44

BACK TO BLACK BOXES?

will tackle the challenge of integrating computational design thinking in the
architecture design curriculum, including the new advancements in the field of AI and
Data science remains to be addressed.

3. An educational framework for computational design thinking black
boxes.
To address the critical gap of the multifaceted impact of emergent Data Science and AI
technologies on computational design education and investigating the role of
architecture education in preparing future computational designers in consideration to
emerging AI tools, this study, first, maps practices, processes, and tools according to
its level of obscurity and encapsulation of complexity as a black box system as
presented in (Figure 1).

Figure 1. Computational design thinking black boxes framework

The proposed framework categorises computational design as computational tools,
practices, and processes, using the Latour's definition of black boxes.

3.1. COMPUTATIONAL TOOLS
Computational tools are categorised based on medium and tools accessibility. The
medium describes how the tool operates, ranging from black-box obscurity in non-
programming, visual programming, and textual programming, with increasing levels
of abstraction while concealing internal logic. Tools accessibility varies from closed-
source "click-the-button" proprietary tools to open-source solutions allowing
investigation and modification of source code. Grey solutions in the middle ground
combine proprietary software with open-source plugins, exemplified by Rhino 3D-
Grasshopper (Proprietary) and Ladybug Tools plugins (Open Source).

3.2. PRACTICES
Practices of computational design thinking encompass various computational
approaches, ranging from basic computerisation that merely replicates or accelerates
traditional tasks without improving design processes, to computational practices where
creativity and innovation are actively fostered through a collaborative human-machine
interaction through computational methods, enhancing the design process.

3.3. PROCESSES

Processes are categorised into reasoning and interaction. The reasoning spectrum

45

V. CALIXTO AND J. CROFFI

illustrates how the problem-solving process is approached, ranging from subjective
understanding in design thinking to analytical interpretation in computational thinking.
Interaction delineates how designers communicate with the design, ranging from
implicit processes driven by subjectivity to explicit, systematic decision-making and
communication.

3.4. AN LAYERED APPROACH FOR COMPUTATIONAL DESIGN/AI ED-
UCATION
The framework proposes a layered approach to education for architecture students,
delineated in Figure 2, targeting the intricate layers of computational design thinking
black boxes. This approach is structured around the medium, representing the interface
for students' design tasks and enabling practices and processes. The framework
suggests using the exemplified computational design and AI tools to introduce
computational design thinking in education, gradually delving into black box
abstraction levels. This incremental approach aims to avoid creating abstraction
barriers and gradually build foundational practices and processes. Each tool, practice,
and process overlap with the previous step, facilitating the learning process. By
teaching computational design thinking and AI-driven education concurrently at
similar abstraction levels, the curriculum enhances both contexts, providing a robust
foundation for students.

Figure 2. An educational framework for computational design and AI

46

BACK TO BLACK BOXES?

4. Discussion and Conclusion
This study proposes a layered framework for education of undergraduate and master
architecture programs. Deepening into the layers gradually allow students to absorb
and process the information in a more seamlessly manner, building a solid foundation
towards the next layers of complexity. It can also keep the students engaged in learning
and deepening their level of understanding towards more complex layers. If high
complex subjects are introduced too early during the learning process, it can make the
students to lose interest and withdraw.

Deepening the understanding of complex black-box layers without a grasp of
foundational concepts built upon earlier steps can introduce abstraction barriers,
impeding students' progress. Hence, future studies might benefit from concentrating on
achieving a balanced approach between black and white boxes, facilitating a smoother
learning process through real-world case studies in educational scenarios.

In an optimal scenario, students should receive education aimed at attaining at least
the initial level of proficiency in visual programming layer. This would provide them
with a basic understanding of computational design thinking, which encompasses
computational design and AI, providing them the foundational skill to investigate the
subject independently further. However, in an ideal scenario, students would strive to
achieve mastery in the highest level of visual programming, thus establishing a solid
foundation to effectively control computational design and AI tools. In this context,
students would possess the necessary knowledge to utilise these tools actively in
generating solutions, rather than merely relying on pre-packaged third-party tools. By
establishing these foundational skills, students can progress towards tackling more
advanced design challenges, utilising their acquired knowledge for research, tooling,
or software development.

However, once they achieve deeper levels of black box abstractions, they may
become contributor to develop encapsulated tools for novices, restarting the cycles, and
pushing it back to the black box.

References
Aish, R., & Hanna, S. (2017). Comparative evaluation of parametric design systems for

teaching design computation. Design Studies, 52, 144-172.
Ashby, W. R. (1956). An introduction to cybernetics.
Alymani, A., Jabi, W., & Corcoran, P. (2023). Graph machine learning classification using

architectural 3D topological models. Simulation, 99(11), 1117-1131.
Burry, M. (2011). Scripting cultures: Architectural design and programming. John Wiley &

Sons.
Basarir, L. (2022). Modelling AI in Architectural Education. Gazi University Journal of

Science, 35(4), 1260-1278.
Burry, J., & Burry, M. (2010). The new mathematics of architecture. Thames and Hudson.
Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining

parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2),
287-300.

del Campo, M., & Leach, N. (Eds.). (2022). Machine Hallucinations: Architecture and
Artificial Intelligence. John Wiley & Sons.

Carpo, M. (2017). The second digital turn: design beyond intelligence. MIT press.

47

V. CALIXTO AND J. CROFFI

Celani, G., & Vaz, C. E. V. (2012). CAD scripting and visual programming languages for
implementing computational design concepts: A comparison from a pedagogical point of
view. International Journal of Architectural Computing, 10(1), 121-137.

Cross, N. (1984). Developments in design methodology. (No Title).
Fischer, T., Fischer, T., & Universtität, G. A. (2003). Toolmaking for digital morphogenesis.

International Journal of Design Computing, 6, 35-40.
Flusser, V. (2013). Towards a philosophy of photography. Reaktion Books.
Gardner N; Meng LL; Haeusler MH, 2020, 'Computational Pragmatism', in RE:

Anthropocene, Design in the Age of Humans - Proceedings of the 25th International
Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA 2020,
Bangkok, pp. 489 - 498, presented at CAADRIA 2020, Bangkok, 05 August 2020 - 07
August 2020

Gaudillière, N. (2020). Evolutionary Tools and the Practice of Architecture: from
Appropriated Typology to Becoming the Black Boxes of CAAD.

Glanville, R. (1982). Inside every white box there are two black boxes trying to get out.
Behavioral Science, 27(1), 1-11.

Glanville, R. (2013). Cybernetics: thinking through the technology. Traditions of systems
theory: Major figures and contemporary developments. Routledge, New York, 45-77.

Green, T., & Blackwell, A. (1998, October). Cognitive dimensions of information artefacts: a
tutorial. In Bcs hci conference (Vol. 98, pp. 1-75).

Kelly, N., & Gero, J. S. (2021). Design thinking and computational thinking: A dual process
model for addressing design problems. Design Science, 7, e8.

Khean, N., Fabbri A., and Haeusler H. (2018) ‘Learning Machine Learning as an Architect,
How to? - Presenting and Evaluating a Grasshopper Based Platform to Teach Architecture
Students Machine Learning’, 95–102. Łódź, Poland.
https://doi.org/10.52842/conf.ecaade.2018.1.095.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society.
Harvard university press.

Leitão, A., Santos, L., & Lopes, J. (2012). Programming languages for generative design: a
comparative study. International Journal of Architectural Computing, 10(1), 139-162.

Negroponte, N. (1975). The architecture machine. Computer-Aided Design, 7(3), 190-195.
Ma, X., Ma, C., Wu, C., Xi, Y., Yang, R., Peng, N., ... & Ren, F. (2021). Measuring human

perceptions of streetscapes to better inform urban renewal: A perspective of scene
semantic parsing. Cities, 110, 103086.

Mitchell, W. J. (1975). The theoretical foundation of computer-aided architectural design.
Environment and planning b: planning and design, 2(2), 127-150.

Moore’s law: The number of transistors per microprocessor. (n.d.). Our World in Data.
Retrieved December 17, 2023, from https://ourworldindata.org/grapher/transistors-per-
microprocessor?time=1972..latest

Oxman, R. (2006). Theory and design in the first digital age. Design studies, 27(3), 229-265.
Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory,

knowledge, models and medium. Design studies, 29(2), 99-120.
Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking.

Design studies, 52, 4-39.
Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy

sciences, 4(2), 155-169.
Simon, H. A. (1969). The sciences of the artificial. MIT press.
Stallman, R. (2002). Free software, free society: Selected essays of Richard M. Stallman.

Lulu. com.
Terzidis, K. (2006). Algorithmic architecture. Routledge.
Veloso, P., & Krishnamurti, D. R. (2019). From Black Box to Generative System. In 107th
ACSA Annual Meeting Proceedings, Black Box (pp. 525-533).

48

