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Abstract. Machine learning-based glare prediction has greatly 
improved the efficiency of performance feedback. However, its limited 
generalizability and the absence of intuitive predictive indicators have 
constrained its practical application. In response, this study proposes a 
prediction model for luminance distribution images based on the 
multimodal learning approach. This model focuses on objects within 
the field of view, integrating spatial and material features through 
images. It also employs semantic feature mapping and multimodal data 
integration to flexibly represent building information, removing 
limitations on model validity imposed by changes in design scenarios. 
Additionally, the study proposes a multimodal Generative Adversarial 
Network tailored for the multimodal inputs. This network is equipped 
with unique feature fusion and reinforcement blocks, along with 
advanced up-sampling techniques, to efficiently distill and extract 
pertinent information from the inputs. The model's efficacy is verified 
by cases focusing on residential building luminance distribution, with a 
97% improvement in computational speed compared to simulation 
methods. Offering both speed and accuracy, this model provides 
designers with a rapid, flexible, and intuitive supporting approach for 
daylight performance optimization design, particularly beneficial in the 
early design stage. 
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1. Introduction 
Daylight is crucial for indoor environments; it offsets electric lighting costs and 

promotes the health and well-being of occupants (Al Horr et al., 2016). However, 
uncontrolled penetration of daylight into buildings could lead to undesirable luminous 
environments, impairing vision or causing visual discomfort. Therefore, glare 
autonomy is a vital part of improving the quality of building indoor environments. 
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However, during the early stages of building design, assessing glare presents a unique 
computational challenge because of complex and time-consuming rendering and 
calculations. This makes it hard for designers to receive real-time performance 
feedback during the process of selecting or improving design schemes, limiting its 
application in practical design (Jones et al., 2018). Three trends in accelerating glare 
evaluation research are 1) Idealizing the light transmission process or screening out 
focus areas for simplified calculations (Giovannini et al., 2020); 2) Accelerating 
rendering by tracing multiple primary rays in parallel on a Graphics Processing Unit 
(Jones, 2019); 3) Implementing rapid feedback with predictive models based on 
Machine Learning algorithms (Ayoub, 2019). Predictive models are increasingly 
favored for their cost-effectiveness and rapid processing capabilities. 

Some relevant papers are reviewed below (Table 1). Predictions mainly focus on 
numerical evaluation metrics, such as Daylight Glare Probability (DGP), vertical eye 
illuminance (𝐸𝐸𝑣𝑣), or annual metrics Annual Sunlight Exposure (ASE). However, there 
is less research on intuitive image-based indicators, such as luminance distribution 
maps, even though intuitive visual formats are more readily accepted and understood, 
matching better with the requirements of the design process. Moreover, the 
generalizability of prediction models is a key focus for users, as it determines models' 
adaptability to various design scenarios. However, it is a significant limitation in 
existing prediction models (Ngarambe et al., 2022). Crucial reasons for this are, besides 
the network structure's inherent attributes, the selection of design elements inputted and 
their feature representation methods. These are crucial as they dictate whether solutions 
with significant variations can be effectively translated through a uniform rule. In 
reviewed research, inputs typically consist of geometry, materials, and environment 
features, which are converted into numerical variables for the network's inputs (Pierson 
et al., 2018). However, this approach's adaptability is typically suboptimal, for instance, 
failing to accommodate diverse spatial forms or material configurations. One potential 
reason is the reliance on single-modal data, which is inadequate for representing all 
features comprehensively. In contrast, multimodal data, integrating the advantages of 
different data types, has proven highly effective in other research areas. This approach, 
however, is seldom employed in the field of building performance prediction, 
suggesting an untapped potential for multimodal data to enhance the generalizability 
of representing building information. 

Therefore, to develop a sufficiently generalized and intuitive method for glare 
prediction, this paper proposes a multimodal feature representation method combined 
with semantic information mapping and its corresponding network structure. This 
method employs images to depict features of sub-aspects within the field of view, such 
as the type, material, and location of surfaces, and combines these with numerical data 
on environmental conditions and viewpoints. This combination allows for a versatile 
portrayal of the spatial features, adaptable to different design scenarios. Furthermore, 
based on Generative Adversarial Networks (GANs), the proposed approach includes 
operations such as multimodal feature fusion, key feature reinforcement, and refined 
up-sampling to satisfy the requirements of a network with multimodal inputs. This 
model enables the rapid generation of image-based glare evaluation from any 
viewpoint, effectively adjusting to any changes in building details, which provides 
efficient and effective support for designers. 
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Table 1. Machine learning-based prediction model for indoor glare prediction 

Ref. Inputs Output Algorithm 
Variables Perfor-

mance 
metrics 

Data type 
geome-
try 

mate-
rial 

wea
ther 

numer-
ical 

image 

Xie et al. 2023 √ × × DGP √ × GBRT 
Radziszewski et al., 2018 √ × √ DGP √ × ANN 
Xie et al. 2021 × × √ DGP √ × KNN, RF 
Liu et al.2020 × × √ Iuminance × √ DNN 
Luo et al. 2022 √ × √ Ev √ × ANN 
Lin et al.2021 √ × √ ASE √ × ANN 
Nourkojouri et al. 2021 √ √ × ASE √ × ANN 
Ayoub et al.2019 √ × × ASE √ × ANN 
Mostafavi et al. 2022 √ × × Iuminance × √ GAN 

2. Methods 

2.1. SEMANTIC INFORMATION MAPPING 
The essence of semantic information mapping is to utilize pixel brightness and 

spatial attributes to detail interior surfaces, including their type, material, shape, and 
location. This mapping is grounded in the imagery captured from a single viewpoint 
by a perspective camera. The approach narrows the learning focus to the field of view, 
rather than the entire space, and the conversion to images impervious to spatial form 
alterations. Subsequently, the view field content is segmented into subregions. Each is 
tailored to different semantic objects based on surface types. These segments are 
merged with their respective material properties. This fusion forms the final semantic 
information matrix, a cohesive representation of spatial and material attributes. 
Additionally, capturing imagery with a fisheye camera typically requires rendering a 
3D model. Due to the fisheye camera's broader range compared to a perspective camera, 
this study introduces a technique to grid the hemisphere in the viewing direction to 
reduce computational load, i.e., merging multiple perspective views to simplify fisheye 
capture. The specific calculation steps are as follows: 

Step 1: Construct the 3D building model, identifying and color-coding various 
surface attributes. 

Step 2: Determine the target viewpoint and its direction. Construct a hemisphere 
centered at the viewpoint and perpendicular to the line of sight. Grid the hemisphere 
based on precision requirements. Create sub-viewing directions from the viewpoint to 
the center of each grid, set the camera's focal length, and capture interior images along 
these viewing directions. The details are illustrated in Figure 1. 

Step 3: Based on captured images, construct semantic matrixes that categorize the 
types of interior surfaces. 

Step 4: Identify the material properties of each surface type and map them in situ to 

31



X. LI, Z. HAN, G. LIU AND R. STOUFFS 

the semantic matrix, creating the image input for this model. It is important to note that 
transparent materials, such as glass, may cause an overlap of multiple types of surfaces, 
for instance, seeing another wall through a window. In such cases, their material 
properties are a blend of multiple materials, as detailed in Table 2. 

 

      
Figure 1. The framework of the prediction model for view-based glare performance. 

Table 2. Definitions of surface material properties. 

Surface type Material index 
Window+Wall window_t * wall_r 
Window+Window+Wall window_t * window_t * wall_r 
Window+Window+Ceiling window_t * window_t * celing_r 
Window+Window+Floor window_t * window_t * floor_r 

2.2. MULTIMODAL INPUT VARIABLES 
In addition to the spatial and material features, environmental conditions and 

viewpoint information are also key factors influencing glare. The environmental 
variables are chosen based on existing research. Solar altitude and azimuth angles 
determine the daylight level, while sky conditions are abstracted to direct normal 
radiation and diffuse horizontal radiation, reflecting the external daylight transmission. 
Additionally, the horizontal and vertical angles of the viewpoint are considered to 
illustrate the relationship between the view direction and the angle of incoming daylight. 
These six variables, quantified numerically, combine with the semantic matrix to form 
the multimodal input for the prediction model, as shown in Figure 1. 

2.3. MULTIMODAL GENERATIVE ADVERSARIAL NETS 
In this study, a novel multimodal GAN (mGAN) is proposed for multimodal inputs. 

This framework is constructed based on the Pix2Pix model (Isola, 2017), which 
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consists of a Generator and a Discriminator, receiving multimodal inputs composed of 
images and vectors. The network structure is illustrated in Figures 2 to 4. 

To accommodate multimodal inputs, the mGAN incorporates a vector-based 
feature encoding and a feature fusion mechanism. Vector features are sequentially 
input into the network and transitioned from a low-dimensional latent space to a higher 
spatial dimension through a series of transposed convolution blocks, aligning their 
dimensions with image features. Simultaneously, image features are exacted with a 
series of convolution blocks, progressively increasing their channel count, integrating 
more refined information, and preserving spatial structure. Finally, the Hadamard 
product is used to fuse the extracted vector and image features. 

Beyond the standard convolution and transposed convolution blocks in Pix2Pix, 
the Generator's up-sampling integrates PixelShuffle blocks with transposed 
convolution blocks. PixelShuffle blocks upscale by rearranging channel data instead of 
inserting blank pixels, transforming feature maps from lower resolution with more 
channels to higher resolution with fewer channels. This approach maintains uniform 
pixel distribution and spatial consistency during up-sampling, thus avoiding the 
checkerboard effect often associated with transposed convolution only. This blend of 
upscaling techniques enables the model to flexibly manage feature representation and 
information flow across various layers, balancing learning capacity, image quality, and 
computational efficiency. 

Additionally, to solve the considerable dimensional discrepancy between image 
and vector inputs, the Generator of the mGAN, besides its existing skip connections, 
has added reinforcement connections. This involves exacting vector-based inputs with 
various depths and incorporating these multi-level deep features as part of the resources 
into the corresponding up-sampling location. This strategy is designed to prevent the 
loss of vector information due to excessive dimensional differences. During the feature 
extraction process, inception blocks from GoogleNet are used, utilizing convolution 
kernels of different scales for multi-scale feature refinement, thereby enriching detail. 

The standard pix2pix loss function is used in the mGAN. The total loss function is 
a weighted sum of the adversarial loss and the L1 loss to improve the generalizability 
and robustness of the network. 

 
Figure 2. The construction of the Discriminator. 
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Figure 3. The construction of the Generator. 

                  
Figure 4. The construction of key blocks in the mGAN. 

3. Evaluation of the prediction model 
To test the performance of the proposed glare prediction model, it has been applied 

to predict the luminance distribution within residential buildings. 
The data sources for this study comprise a building form scheme dataset, a material 

dataset, and a weather dataset. The scheme dataset employed in this study is RPLAN, 
an Asian residential building floor plan dataset assembled by Wu et al. in 2019. 5000 
building models were generated with Grasshopper (single-wall models for daylight 
simulation). Material attribute parameters are guided by the Chinese Daylighting 
Design Code, involving the reflectance of the walls, ceiling reflectance, floor 
reflectance, and the transmittance of windows. The weather data is sourced from 
twelve cities in China, each belonging to one of five different light climate zones, and 
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covers the time range from 8:00 AM to 6:00 PM. Data from these multiple sources are 
randomly selected and integrated to develop a simulation model, which is utilized for 
generating the learning target with Ladybug.tools. To standardize the visualization 
mapping relationship, the display lower boundary for cloud maps is set to 0 lux, with 
an upper boundary of 2000 lux. 

The dataset comprises 4,800 samples, allocated in an 8:2 ratio for training and 
testing purposes. To improve training efficiency, the resolution of the input images has 
been downscaled to 256x256 pixels. Additionally, numerical features have been 
normalized to a range between 0 and 1, ensuring a balanced influence on the overall 
data distribution. The detailed hyperparameter settings are shown in Table 4. 

The performance of the prediction model is evaluated in terms of both data 
accuracy and quality of the images. The accuracy metrics include MAE (Mean 
Absolute Error) and MAPE (Mean Absolute Percentage Error), while image quality is 
assessed through SSIM (Structural Similarity Index Measure) and Image Difference 
Analysis (IDA). 

Table 3. Ranges of material, weather and view variables. 

Variables of material Range 
Reflection rate of wall (wall_r) [0.3, 0.7] 
Reflection rate of ceiling (celing_r) [0.5, 0.9] 
Reflection rate of floor (floor_r) [0.1, 0.5] 
Transmittances of windows(window_t) [0.5, 0.8] 
Solar azimuth angle(az_sun) Data from Beijing, Shanghai, Chengdu, 

Guangzhou, Harbin, Hohhot, Kunming, 
Lhasa, Shenyang, Urumqi, Xian, Xining  

Solar altitude angle (al_sun) 
Direct normal radiation (dir_rad) 
Diffuse horizontal radiation (dif_rad) 
View azimuth angle(az_sun) [0, 360] 
View altitude angle (al_sun) [0, 360] 

Table 4. Hyperparameters of training. 

Parameters Learning Rate_D Learning Rate_G Batch Size n_epoch Optimizer 

Settings 
Initial value: 0.0005 
Drop period: 5 
Drop rate: 0.3 

Initial value: 0.0015 
Drop period: 5 
Drop rate: 0.3 

8 200 Adam 

4. Results 
The Discriminator converges after around 120 epochs, while the Generator 

converges after around 140 epochs. Table 5 provides an overview of various cases from 
this test set, involving the inputs, ground truth, predicted images, and IDA maps. 
Additionally, Figure 6 illustrates MAE, MAPE, and SSIM for the test set. The training 
set shows an average MAE of 3.654, an average MAPE of 0.124, and an average SSIM 
of 0.919. In contrast, the test set has an average MAE of 18.233, an average MAPE of 
0.466, and an average SSIM of 0.814.  
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Table 5. Example results of the test set. 

Imgae inputs Vector inputs Ground truth Prediction IDA 

 

al_sun:57.231 
az_sun:110.561 
dir_rad:792 
 

dif_rad:30 
az_view:285.109 
al_view:89.790 

   

 

al_sun:33.153 
az_sun:197.812 
dir_rad:753 
 

dif_rad:152 
az_view:7.571 
al_view:104.526 

   

 

al_sun:55.426 
az_sun:110.503 
dir_rad:621 
 

dif_rad:200 
az_view:20.579 
al_view:87.230 

   

 

al_sun:74.489 
az_sun:241.523 
dir_rad:487 
 

dif_rad:242 
az_view:227.846 
al_view:99.916 

   

 
Figure 5. Accuracy indicators of the test set. 

5. Discussion 
The efficacy of the proposed prediction model has been verified through the case 

study, and its strengths and limitations deserve further discussion. 
1) Time gap with traditional simulation: The proposed model's calculation time 

involves the time required for capturing the view content, constructing the semantic 
feature matrix, and generating the predictive image. Constructing the semantic feature 
matrix is the most time-consuming part. For example, in a 9-viewpoint splice case, the 
average processing time is about 7.6s, while the other steps take less than 1s. By 
comparison, simulations for the same dataset range from 276 to 432s, averaging 354s. 
This model achieves a 97% improvement in speed compared to traditional simulations. 

2) Generalizability of the proposed prediction model: This model focuses on 
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objects within the field of view rather than the entire building. The internal surfaces' 
types, shapes, and locations are represented as images, thus remaining unaffected by 
structural changes. Material information, integrated into the images through semantic 
feature mapping, allows the model to adapt various material setups. The environmental 
setting is distilled into essential weather parameters, releasing the model from climatic 
constraints. Overall, this model enhances generalizability in spatial, material, and 
environmental domains, catering to various design scenarios. 

3) Partial sample with poor performance: A few predicted results with a large error. 
There are two potential reasons. The first is overfitting within mGANs, suggested by 
the superior performance of the training set over the test set. Despite efforts to enhance 
model generalizability — like increasing sample size, adding regularization, and using 
robust layers — overfitting remains a challenge. The second reason might be the partial 
loss of vector-based feature information during processing. In some low-performance 
samples, while the surface blocks appear similar, great differences in the luminance 
distribution of external windows are observed. This could be due to the model's limited 
ability to learn weather features, attributed to a dimensional gap between vector and 
image features. Addressing these two issues is crucial for future work in this research. 

6. Conclusion 
In this paper, a novel rapid predictive model for glare is proposed, designed to 

quickly visualize glare conditions without limitation from design scenario variations. 
In this model, building spaces are represented as standardized viewpoint snapshots. 
Semantic feature mapping is employed to integrate spatial characteristics and material 
properties. Images containing comprehensive information, along with vectors that 
reflect environmental conditions, constitute the multimodal input of this model. To 
fulfill them, mGANs have been developed, focusing on multimodal features. The 
network integrates feature fusion, feature reinforcement blocks, and advanced 
upscaling methods, enabling it to effectively eliminate redundant information from 
multimodal inputs, deeply extract features, and generate predictive images. The 
model's efficacy is verified through case studies on luminance distribution prediction 
in residential buildings. Compared to simulation methods, it achieves a 97% 
improvement in computational speed. Overall, the model provides designers with a 
faster, more flexible, and intuitive glare visualization method, useful in scenarios such 
as requiring quick evaluation for the performance of numerous schemes or rapid 
intuitive understanding of glare conditions. Currently, this model exists as a conceptual 
prototype. Future research will further refine the overall process and develop related 
associated tools based on popular design platforms to truly support design practice. 
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