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Abstract.  In urban morphology studies, accurately classifying 
residential building patterns is crucial for informed zoning and urban 
design guidelines. While machine learning, particularly neural 
networks, has been widely applied to urban form taxonomy, most 
studies focus on grid-like data from street-view images or satellite 
imagery. Our paper provides a novel framework for graph classification 
by extracting features of clustering buildings at different scales and 
training a spectral-based GCN model on graph-structured data. 
Furthermore, from the perspective of urban designers, we put forward 
corresponding design strategies for different building patterns through 
data visualization and scenario analysis. The findings indicate that GCN 
has a good performance and generalization ability in identifying 
residential building patterns, and this framework can aid urban 
designers or planners in decision-making for diverse urban 
environments in Asia. 
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1. Introduction 

Urban morphology is the study of how physical elements like street networks, public 
spaces, plots, and buildings shape and organize urban areas (Kropf, K., 2018). 
Residential blocks, a significant component of modern urban fabrics, have always been 
viewed as a classic research domain by urban designers and planners in terms of their 
geometric characteristics, spatial layout, and topology structure. Particularly for high-
density residential areas in Asian cities, where residents are faced with a more crowded 
and complex built environment than in Western cities, scholars need to have an in-
depth understanding of existing residential building patterns that support 
environmentally appropriate design guidelines. Building patterns, in essence, refer to 
recurring and observable layouts or configurations of a collection of buildings, which 
can be distinguished semantically within a block or architectural context (Zhang, et al., 
2013). Previous studies of residential building patterns used qualitative research 
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methods (such as document analysis, field observations, or visual mapping) to capture 
the nuances of spatial organization and design principles. However, with the 
development of computational techniques and the advent of the AI era, machine 
learning methods, specifically artificial neural networks (ANNs), have become more 
and more important for urban analytics and, as such, were applied to the urban 
morphological domain to some extent (Yan, X, et al., 2021). 

This research introduced a novel spectral-based graph convolutional neural 
network (GCN), a type of machine learning architecture in the family of ANNs, to 
examine if neighboring residential buildings have a similar structure or semantic 
homogeneities. GCN is specifically developed for processing graph-structured data 
and, as such is appropriate for building pattern classification, especially when it comes 
to the spatial topology of residential buildings layout (Yan, X, et al., 2019). The purpose 
of this study is to inform urban design decisions, planning strategies, and preservation 
efforts through an in-depth understanding of residential building patterns. 

As shown in Figure 1, the framework of the present study includes four sections. 
Section 1 is made up of two basic arrangements. One is to gather datasets for model 
training and performance validation, and the other is to define physical and semantic 
features from both single buildings and groups of buildings. In section 2, we extract the 
centroid of each building's footprint as a node and connect all the nodes within a 
residential block to construct a simple undirected graph. Also, the features defined in 
Section 1 are attached to each node for graph representation. Section 3 is the core 
content of this experiment, involving model initiation, model training, model validation, 
and result interpretation. In section 4, we put forward spatial design suggestions for 
each category of residential building pattern from the urban design and planning 
perspective, which is a useful application to real-world practice. 
 
 

 
 
 

 

 

 

 

 

  

 
 
 

 

Figure 1. Research framework of classifying residential building patterns with GCN. 
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2. Methodology 
Shenzhen is located to the south of Guangdong Province in China and has a border 
with Hong Kong. Hong Kong is traditionally recognized as Asia’s financial center, 
whereas Shenzhen has gradually emerged as a significant participant in global 
manufacturing and trade. Despite the two cities having divergent administrative 
systems and development trajectories, their close geographic proximity and limited 
land availability create similarities in the built environment, particularly in high-density 
residential areas. Therefore, we picked these two cities as study areas by training GCN 
models on the footprint dataset in Shenzhen and validating model performance on the 
footprint dataset in Hong Kong. 

2.1. DATA PREPARATION 
To obtain reliable datasets for the experiment, we downloaded the zoning maps and 
the latest geographic datasets through their official open-data portal. After selecting all 
types of residential plots from the zoning maps, along with the intersecting building 
footprints of the two cities, we got 2196 residential blocks in Shenzhen and 1742 
residential blocks in Hong Kong as shown in Figure 2. Note that the 2196 residential 
blocks along with 97601 individual buildings are input samples for the GCN model 
training, testing, and relevant analysis. In addition, the geo-dataset is pre-processed on 
the ArcGIS platform and then exported to a JSON file for further analysis in Python. 
 

2.2. CHARACTERISTICS DESCRIPTION 
In the field of urban modeling, characteristics description refers to the artificial 
definition of the input node features, which can be represented by either socio-
economic or physical attributes of spatial objects. Prior research has extensively 
employed geometric homogeneity to depict building shapes or utilized rectangle 

 
 

 

 

 

 

 

  

 
 
 

 

Figure 2. Visualization of zoning maps and residential-building footprints. 
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algebra to portray the adjacent relationship between building locations. However, there 
is currently no clear standard for which indicators can serve as perfect semantic 
representations on maps. Therefore, this paper focuses on variable selection at different 
scales after conducting a thorough literature review. As shown in Table 1, there are 5 
variables including building size, building shape, building orientation, building height, 
and building volume at the architectural scale, similarly, there are 5 variables including 
lot area, building coverage ratio, floor area ratio, average shortest path, and lot coverage 
limit at the block scale (except for the position index). Each index is measured with a 
specific formula to describe the corresponding variable mathematically. Figures 3 and 
4 display the geometric signs of all 14 indices at the architectural scale and the block 
scale, respectively. 

Table 1. Input node features for describing semantic characteristics of residential buildings. 

Category Node Features Index Description 

Intrinsic 
Attribute 

Position Centroid 
Arithmetic means of coordinates of all building 
footprint vertices, where N is the number of 
vertices. 

 

Architecture-
Scale 

Building Size 
Area Coverage area of a single building. 

Perimeter 
Perimeter of the outer edge of the building's 
exterior walls. 

 

 

Building Shape 

Compactness 
A measure that combines height, footprint area, 
and form to quantify the overall compactness of a 
building. 

Concavity Area ratio of the building to its convex hull (CH) 

Overlap Index 
The area ratio of the intersection and union of a 
building with its equal-area circles (EAC) 

Building 
Orientation 

SBRO Orientation of the smallest bounding rectangle 

Building Height AGL Building height above ground level 

Building Volume 
Volume 

The total three-dimensional space occupied by the 
building. 

CVI 
The ratio of the building volume to the cube of its 
height. 

Block -Scale 

Lot Area LA 
The total horizontal area within the lot lines of a 
lot, exclusive of streets 

Building Coverage 
Ratio 

BCR The ratio of all building's area to the lot area 

Floor Area Ratio FAR 
The ratio of all building's gross floor area to the lot 
area 

Average Shortest 
Path 

LUC 
The average distance between all pairs of nodes in 
the graph. 

Lot Coverage Limit LCL 
The maximum percentage of a lot that can be 
covered by buildings 
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2.3. GRAPH REPRESENTATION 
At this stage, we need to represent the relationships between graph nodes (residential 
buildings) in a 2D space based on their proximity or connectivity and store the graph-
based data in computer memory. This process is referred to as graph representation. As 
the edge orientation is irrelevant, the network connected through the centroids of a set 
of building footprints can be represented as a simple undirected graph. Mathematically, 
a simple undirected graph 𝐺  can be represented as 𝐺 = (𝑉, 𝐸,𝑊), where 𝑉  is the 
vertex (node) set, 𝐸 is the edge set, and 𝑊 is an adjacency matrix that stores the edge 
weights between each pair of vertices. Each vertex has 10 variables (measured by 14 
indices) denoting the graph signals.  

To model a graph structure programmatically, we need to consider how nodes are 
connected and how statistical distances are measured between buildings. Existing 
research has shown that there are many methods to create proximity graphs according 
to graph theory, such as Relative Neighborhood Graph (RNG), Minimum Spanning 
Tree (MST), K-Nearest Neighbor Graph (K-NN), etc. Different methods have different 
computational complexities and may be more suitable for specific types of data 
distributions or applications (Adamczyk, J., 2022). In this paper, we choose Delaunay 
Triangulation (DT) as the connection method, since it has been widely used in GIS for 
terrain modeling, network analysis, and spatial analysis (Fig. 5).  

Statistical distances, also known as the weights of graph edges, are generally 
measured through shape homogeneity and spatial proximity. Shape homogeneity 
quantifies the similarity of building polygons, which has been implicitly represented 
by the input node features (Yang, Huang, 2023). Hence, only spatial proximity requires 

 
 
 
 
 

 
 

Figure 3. Illustration of indices for the individual building at the architecture scale. 
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Figure 4. Illustration of indices for the clustering buildings at the block scale. 
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additional measurement. Note that we calculated the pairwise Euclidean distance 
between two centroids of building nodes in Python based on the formula shown in 
Table 1. 
 

Graph labeling is another preparatory work for the following graph classification 
task. As GCN is a supervised machine learning architecture, it requires assigning labels 
to the entire graph based on domain knowledge before training. In this paper, we 
gathered a group of volunteers with expertise in architecture and urban design to 
manually identify all residential building graphs in Shenzhen as three typical patterns, 
as shown in Figure 6. Note that because there is no unanimous criterion for the 
taxonomy of building patterns, we divided the building groups into 3 patterns from the 
perspective of visual cognition proposed by urban study precursors. Type 1 is the 
scattered pattern, where only high-rise residential buildings are scattered on the land 
plot. Type 2 is viewed as the array pattern, with only multi-story residential buildings 
neatly arranged on the land plot. Type 3 is the mixed pattern, as a mix of high-rise 
buildings and multi-story buildings is laid out on the land randomly. Finally, a total of 

 
 
 
 

  

 

 

Figure 5. Graph representation of a building group based on Delaunay Triangulation. 

 
 
 

  

 

 

 

 

 

 

 

 

 

Figure 6. Three typical types of residential building layout in China. 
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1698 building groups were manually labeled as type 1, 425 as type 2, and 73 as type 3. 

3. Graph convolutional neural network 

3.1. OVERVIEW OF GCN ARCHITECTURE 
Convolutional graph neural networks (ConvGNNs) have become popular in recent 
years, as this type of machine learning model is efficient in performing convolution 
operations on graph-structured data, especially in scenarios where relationships matter.  

The general architecture of ConvGNNs consists of several key components that 
work together to exchange information between target nodes and their k-hop 
neighborhood. The process of message passing is called node embedding, aiming to 
learn a low-dimensional representation for each node. More importantly, this process 
will be repeated many times to update the node embedding itself so that the global and 
structural information of the graph can be captured successfully (Chen, W.,2021). 
Since 2014, computer scientists have created more than a dozen architectures for 
ConvGNNs (such as SCNN, Chebnet, GCN, GraphSage, GAT), and most of them 
adopt the abovementioned logic (Zhao, R., et al, 2020). 

In this paper, GCN is used for the building graph classification experiment, due to 
its high computational efficiency, interpretability, and performance. As shown in 
Figure 7, the architecture of GCN is composed of an input layer, multiple graph 
convolutional layers, a pooling layer (readout), two fully connected layers, and an 
output layer. Note that the input graph consists of an adjacency matrix and a node 
feature matrix, the activation function we used is ReLu, the graph convolution 
operation is spectral-based, and the pooling is mean. 

3.2. SPECTRAL-BASED GRAPH CONVOLUTION 
As we know, the architecture of graph convolution can be either spectral-based or 
spatial-based. Unlike spatial approaches, which focus on capturing local information 
within the immediate neighborhood of each node, spectral approaches can leverage the 
graph Laplacian's eigenvalues and eigenvectors to capture global information about the 

  

 

 

 

 

 

 

 

 

Figure 7. Visualization of GCN architecture for graph classification. 
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graph structure (Wei, Z., et al., 2016). Furthermore, spectral graph convolution has the 
advantage of being computationally efficient, especially for graphs with a relatively 
small number of nodes (Du, S., et al., 2018). For these reasons, the spectral method is 
more suitable for the data we used in the experiment. 

In essence, spectral approaches stem from graph signal processing, where the 
convolution operation transforms the graph signals (node features) into the spectral 
domain using the graph Fourier transform, and then transforms the signals back to the 
spatial domain using the inverse graph Fourier transform. The graph convolution 
operation in the spectral domain can be expressed using the graph Fourier transform as 
follows: 

𝑓*("#$)(𝜆&) = σ(-𝑓*(")(𝜆') ∙ 𝑔0𝜃(𝜆& , 𝜆')
(

')$

) 
Where: 

• 𝑓*(")are the graph Fourier coefficients of the input signal at layer 𝑙. 
• 𝑔0𝜃 is the filter in the frequency domain parameterized by 𝜃. 
• 𝜆& and 𝜆' denote the 𝑖-th and 𝑗-th eigenvalues of the graph Laplacian matrix. 
• The graph Laplacian is L=D−A (where D is the degree matrix, A is the 

adjacency matrix) 
Note that the filter function 𝑔0𝜃(𝜆& , 𝜆') determines how information is aggregated 

across different eigenvalues during the convolution operation. 

4. Experiment and results 

4.1. MODEL TRAINING AND EVALUATION 
In this experiment, we try to test model performances of GCN architecture by different 
convolution layers. Before model training, we set the hyper-parameters of learning rate, 
dropout probability, and mini-batch size of 0.1, 0.5, and 200 separately. Also, we define 
0.8 as the threshold to accept correctly predicted classes with an output probability 
greater than this value. The input data is divided into training sets, test sets, and 
validation sets according to the ratio of 6:2:2. 

Figure 8 shows the accuracies and loss changes of the validation dataset over 
training time based on 4 different architectures. Obviously, after 500 steps of training, 

 

 

 

 

 

 

 

 

Figure 8. Visualization of GCN architecture for graph classification. 

46



CHARACTERIZING RESIDENTIAL BUILDING 
PATTERNS IN HIGH-DENSITY CITIES USING GRAPH 

CONVOLUTIONAL NEURAL NETWORKS 
 

almost all the models reach stability, and the model architecture with 2 graph 
convolutional layers has the best performance. 

As shown in Table 2, for model 2, the accuracies of training sets and test sets are 
97.95% and 94.91%, and the loss values are 0.13 and 0.18, respectively.  The close and 
high accuracies between training and test sets imply that the GCN model has good 
generalization capacity and can be used for other datasets. 

Table 2. Prediction accuracy comparison. 

Model Name Test Accuracy Train Accuracy Test Loss Train Loss Fit Time (s) 

depth=1 90.00 95.16 0.29 0.17 19.12 

depth=2 94.91 97.95 0.18 0.13 81.67 

depth=3 90.00 94.53 0.33 0.20 167.08 

depth=4 89.09 93.85 0.37 0.17 226.55 

4.2. GENERALIZATION ABILITY ANALYSIS 
In this section, we ran another experiment on the Hong Kong dataset to verify the 
generalization capacity of the pre-trained GCN model. After inputting the whole 
residential footprint for classification, each residential plot was assigned a unique 
typological label defined previously. To visually display the classification results, we 
marked the residential areas in different colors on ArcGIS, as shown in Figure 9. It is 
important to mention that the accuracy has also achieved a high value of 93.77%, 
indicating that the model possesses a strong ability to generalize. 

5. Urban design suggestions for different types of building layouts 

It is crucial to apply the results of machine learning to practical tasks in the field of 
urban design and planning. Therefore, this paper uses GCN to automatically classify 
urban residential spaces and proposes design and planning suggestions for three 

 
 

 

 

 

 

  

 
 
 

 

Figure 9. Visualization of prediction result of Hong Kong dataset. 
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different building patterns.  
For type 1, careful attention should be paid to sunlight and walkability, since the 

proximity of tall buildings on both sides of a street can create a visually enclosed or 
constrained space, i.e., the canyon effect. For type 2, residential blocks with only low 
houses lack the diversity of land uses, housing types, and amenities, leading to a 
homogenous and boring environment. Hence, we recommend increasing recreational 
facilities and featured landscapes. For type 3, we suggest residents should focus more 
on community safety due to the complex built environment and limited open spaces. 

6. Conclusion 
Classification of perceptual patterns of residential building groups through supervised 
learning facilitates the interpretation of urban morphology with spatial semantic 
structures, thereby contributing to informing real-world planning decisions and 
improving the overall quality of urban life. The present study has demonstrated the 
potential of the GCN classifier to automatically identify the semantic relationship of 
group buildings through experiments on large urban datasets. More importantly, the 
findings make us confirm that the application of machine learning technologies brings 
data-driven insights, automation, and predictive capabilities to urban design and 
planning processes. 

References 
Kropf, K. (2018). The handbook of urban morphology. John Wiley & Sons. 
Zhang, X., Ai, T., Stoter, J., Kraak, M. J., & Molenaar, M. (2013). Building pattern 

recognition in topographic data: examples on collinear and curvilinear 
alignments. Geoinformatica, 17, 1-33. 

Yan, X., Ai, T., Yang, M., & Tong, X. (2021). Graph convolutional autoencoder model for 
the shape coding and cognition of buildings in maps. International Journal of 
Geographical Information Science, 35(3), 490-512. 

Yan, X., Ai, T., Yang, M., & Yin, H. (2019). A graph convolutional neural network for 
classification of building patterns using spatial vector data. ISPRS journal of 
photogrammetry and remote sensing, 150, 259-273. 

Adamczyk, J. (2022). Application of Graph Neural Networks and graph descriptors for graph 
classification. arXiv preprint arXiv:2211.03666.Schölkopf, B., Smola, A. J., Williamson, 
R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural computation, 12(5), 
1207-1245. 

Chen, W., Wu, A. N., & Biljecki, F. (2021). Classification of urban morphology with deep 
learning: Application on urban vitality. Computers, Environment and Urban Systems, 90, 
101706. 

Du, S., Shu, M., & Feng, C. C. (2016). Representation and discovery of building patterns: A 
three-level relational approach. International Journal of Geographical Information 
Science, 30(6), 1161-1186. 

Wei, Z., Guo, Q., Wang, L., & Yan, F. (2018). On the spatial distribution of buildings for map 
generalization. Cartography and Geographic Information Science, 45(6), 539-555. 

Yang, L., & Huang, W. (2023). Representation and assessment of spatial design using a 
hierarchical graph neural network. Automation in Construction, 147, 104727. 

Zhao, R., Ai, T., Yu, W., He, Y., & Shen, Y. (2020). Recognition of building group patterns 
using graph convolutional network. Cartography and Geographic Information 
Science, 47(5), 400-417. 

48


