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Abstract. The materials stored in existing urban buildings represent 
a significant share of globally accumulated resources, the composition 
and quantity of which should be tracked for management and reuse 
purposes. Due to the coarse-grained nature of building data at the city 
level, the description of building material stock (BMS) is usually 
limited to the material intensity (MI) level of several key materials, 
omitting the component-level analysis of construction elements, and 
building devices. Hence, a flexible and compatible modelling 
framework is needed for BMS modelling to adopt different levels of 
detailed building data. This study proposes an ontology-based 
framework, which sets the characteristics of available building data as 
context and makes reasoning for a feasible modelling level. An 
ontology is developed to capture context knowledge and define the 
BMS concepts and their properties. A reasoning algorithm is designed 
to query and categorise building instances with the same attributes into 
an archetype, to integrate their various granularity of property data, and 
to calculate the material stocks at appropriate levels. Some Singapore 
buildings are used for ontology instantiation and explanation. This 
framework is anticipated to be a new paradigm for multi-level BMS 
modelling and contribute strategies for urban circularity design. 

Keywords.  Circular City, Building Material Stock, Domain Ontology, 
Multi-level Modelling, Missing-data Imputation. 

1. Introduction 
The energy-intensive production of building materials, such as cement, steel, glass, 
etc., causes a heavy environmental load during urban expansion. Exploring the 
potential of material recycling and reuse from the urban building stock becomes an 
urgent problem for developing a resilient urban environment. Under the circular 
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economy, quantifying and tracking materials stored in existing buildings to model 
BMS is essential for mining urban construction resources and preparing them for reuse. 
Urban-level BMS modelling widely uses the “bottom-up” approach, which allows for 
a more granular analysis of BMS by analysing individual buildings and their 
components and indicating the precise locations where materials are utilised. Existing 
BMS modelling mainly starts from data collection. However, due to the wide variety 
and quantity of city buildings, applying “bottom-up” to describe the total BMS in 
countries/cities that face building material data limitations is challenging.  

At the urban level, the building data required for BMS modelling has some 
particularity. First, the data required covers a wide range and types, including various 
geometric (e.g., building height, footprint area, components thickness, etc.) and 
attribute (e.g., building age, function, lifespan, material intensity, etc.) “features” of 
buildings, components, and materials. Besides, the data are heterogeneous, with 
different formats, semantics, and sources in the temporal and spatial dimensions. 
Hence, collecting and processing data to form a relatively complete dataset before 
conducting analysis required much time and labour. Third, data of various grains 
available needs to be evaluated and processed manually by researchers and the level 
(in MI or component levels) for modelling is identified (Fig.1). At the MI level, the 
total material mass can be calculated by multiplying the building’s Gross Floor Area 
(GFA) or Gross Volume (GV) by an appropriate MI in kg/m2 or kg/m3. The MI 
coefficients vary depending on the building’s age, function, and structural system. At 
the component level, the mass of the materials stored can be calculated by multiplying 
the volume (m3) of various components and material density (kg/m3). 

Figure 1. Description of BMS at different levels of detail. 

The component-level BMS analysis aids in a more efficient return of materials into 
the resource loop. It allows for distinguishing between the recovery paths of materials 
retrieved from various components. Also, even though materials stored in other 
building systems are limited, their recycling capabilities can be commendable. For 
instance, copper, aluminium, and wood from wires and pipes can be recycled, making 
them deserving attention (Yang et al., 2022). However, because of the lack of 
corresponding detailed data, the materials in components of such building systems, 
such as HAVC, plumbing, electricity systems, etc., have always been neglected in 
existing research. It is challenging to obtain “features” data of all systems’ components 
and materials of one building in a short period. Researchers often have to rely on 
various assumptions due to missing information, particularly concerning data such as 
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MI that can mostly be calculated from a previous demolition project. These 
assumptions cover multiple data types, making them difficult to track and interpret 
when expanding the material description results to the urban level. Because the link 
between raw data and domain knowledge is hidden in the implementation, the BSM 
and its analysis process can be seen as a “black box” with little interpretability. Most 
existing research also concentrates solely on modelling BMS at a singular level 
(material or component) and one kind of building system. It is difficult to form a 
complete dataset that includes “features” of all building systems due to the inconsistent 
availability of varying buildings, which results in some data being abandoned and not 
being used efficiently. The added value of the data itself is limited if it is not translated 
into knowledge to support BMS modelling across levels. 

It has been recognised that the “features” of various buildings, systems, and 
components are highly interconnected when modelling material stock at different 
levels of detail with corresponding calculation rules (Yuan et al, 2023). For instance, 
the buildings with same function and completed in the same period in a city should 
have the same structural system and material properties. These buildings can quantify 
the mass of their material stock using the same indicator value (such as MI). Suppose 
that the relationship between these “features” can be defined based on expert 
knowledge and applying a set of reasoning rules; the multi-level BMS modelling, data 
collection, and processing can then be conceived as a holistic system. In knowledge 
representation, an ontology refers to a formal and explicit specification of concepts 
within a domain and the relationships between these concepts. In recent years, 
ontologies have demonstrated significant potential. It has been widely used in the 
construction industry, including for data integration, domain model development, and 
application ontology creation (Zhou et al., 2016). From domain knowledge, it can 
capture and organise the complex elements’ relationships and underlying logic within 
“multi-level BMS” models.  

Hence, this research proposes a new paradigm for “multi-level BMS” modelling 
(the domain of this study) in a data-efficient way. This new paradigm introduces 
ontology as a foundational structure to organise the domain’s information, knowledge, 
and calculation rules. The goals of this paradigm are: 1) Automatically identify 
buildings with potentially similar materials stored according to “building attributes”, 
such as building age and function; 2) Supplement missing data by incorporating newly 
added building instances if their material properties are identified as similar to 
previously input ones; 3) Determine the applicable level for modelling BMS and 
execute corresponding calculation rules according to available data. 

This paper mainly includes the following five parts. Section 2 reviews the related 
research to introduce the background of this study. Section 3 proposed the method of 
ontology and reasoning function development and tested the ontology-based reasoning 
paradigm suggested using several building instances with different-grained data. The 
results are summarised and discussed in section 4. In section 5, the conclusion of this 
research is provided. 

2. Background 
BMS modelling is one of the critical domains of sustainable city development, as it 
involves intricate variables affecting the composition, mass, and proportion of 
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materials in buildings. Its analysis relies heavily not only on information technology 
(data and information) but also on knowledge and human wisdom. To formalise and 
share complex knowledge within the domains, ontologies are valuable, yet their 
application in solving urban analysis problems is relatively new. To solve specific 
urban questions, ontologies have been proposed to support the definition of the 
concepts, their properties, and the relationships of domain knowledge from two 
aspects: 1) knowledge management: representing knowledge in a standard way, and 2) 
automated data reasoning: reasoning about knowledge in a machine-interpretable way. 
For instance, a domain ontology was used for urban building renovation (Daneshfar et 
al., 2022) and built cultural heritage conservation (Zalamea et al., 2016), including 
knowledge about how urban-related features impact building renovation and 
conservation activities. Allan et al. (2021) enhanced an Urban Energy Simulation 
(UES) ontology to identify objects, classes, and properties for defining the UBEM 
archetypes based on data reasoning. An ontology can be coupled with algorithms or 
structural knowledge graphs to form a semantic model. Some researchers developed 
applications to operate on top of the ontology. To our knowledge, no ontology has been 
proposed for modelling multi-level BMS. However, integrating an ontology into BMS 
modelling shows promising potential for 1) supporting “multi-level” modelling by 
representing all related domain knowledge and calculation rules; and 2) developing an 
application algorithm for “data efficient” BMS modelling by processing data at 
different levels of granularity automatically, based on the reasoning of ontology. 

3. Method 
The proposed framework, outlined in Fig. 2, involves several key steps. Firstly, domain 
knowledge, calculation rules, concepts, and relationships about BMS descriptions are 
extracted to create a domain ontology. Secondly, building data in diverse formats 
within the data source layer is semantically linked to the domain ontology using a set 
of mapping assertions. In this way, the combination of ontology and mapping, known 
as an OBDA specification, reveals the underlying data source as a virtual RDF 
knowledge graph, enabling access via SPARQL during query execution. Thirdly, a 
reasoning algorithm is developed to query information from the virtual RDF graph, 
enabling analysis and filling the data gap based on building features. Finally, this 
framework selects model levels and performs BMS modelling automatically, 
reasoning from available data. This section will comprehensively introduce the detailed 
steps involved in developing this framework. 

3.1. ONTOLOGY DESIGN FOR MULTI-LEVEL BMS MODELING 
Various methods for ontology development have been proposed in different domains, 
and there is no single “correct” way. This paper follows the guidelines and steps 
introduced by existing research (Darlington & Culley, 2008). The development phases 
mainly include 1) ontology specification, determining the domain and scope of domain 
ontology; 2) knowledge acquisition: listing important terms (concepts), relationships 
between concepts (class hierarchy), and class properties; 3) ontology 
conceptualisation; and 4) ontology implementation: create instances.  

338



 AN ONTOLOGY-BASED REASONING FRAMEWORK: 
TOWARDS MULTI-LEVEL AND DATA-EFFICIENT 

BUILDING MATERIAL STOCK MODELLING 

Figure 2. The structure of the ontology-based reasoning framework. 

3.1.1. Ontology Specification 
Ontology specification is the first step of ontology development by answering 
questions regarding purpose, scope, intended end-users, and intended use of the 
ontology. Tab. 1 summarises the information on ontology specification in this study. 

Table 1 Information related to ontology specification. 

Questions Answers 

Q1: What is the domain that the ontology will cover? Urban building material stock modelling. 

Q2: For what we are going to use the ontology? Facilitate urban BMS modelling at a corresponding 
level based on available data granularity. 

Q3: For what types of questions, the information in the 
ontology should provide answers? 

Answer queries related to material stock quantification 
rules aligned with data scenarios to optimise 
information utilisation. 

Q4: Who will use and maintain the ontology? Decision-makers; Urban; Researchers. 

3.1.2. Knowledge Acquisition 
This study first conducted a systematic literature review of 99 papers (recent ten years) 
on urban BMS modelling, which is the basis for knowledge acquisition. Knowledge 
acquisition aims to define a list of related concepts and terminologies. This study refers 
to the “object” and “process” concepts of ontology development and composes the 
BMS quantification as a set of “processes”. The “resources” artefact set includes the 
material stock quantification-related objects, which are inputs of the process part for 
mass/volume calculation. The “actors” constitute the researchers, urban designers, and 
related government departments involved in identifying the calculation rules and 
processing quantification. The calculation results are outputted as data items and 
generate material mass. The concepts and terminologies are extracted from domains 
following our designed ontology structure (Fig. 3) and expressed in Web Ontology 
Language (OWL). This multi-level BMS stock ontology is compacted as “bms:”.  

For the “object” concept, we investigated the materials in the buildings, various 
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building systems, and corresponding components to categorise these entities to account 
for the mass (volume) of material stock. This study reused the bot:Building, bot:Storey, 
bot:Zone, bot:Space, and bot:Element in Building Topology Ontology (BOT) 
(Rasmussen et al., 2021) to represent the topological structure of buildings. The 
mat:Material and related entities in Building Material Ontology (Fenz et al., 2021) are 
reused to describe materials and their properties in the components. The “process” in 
this ontology is mainly related to calculating material mass/volume based on the 
properties of the building, components, and material. For other building systems’ 
components (devices) we refer to the SAREF4BLDG extension ontology (Poveda-
Villalón & Garcıa-Castro, 2018). For the design of the “process” part, we refer to the 
concepts related to data quantitative method proposed by the Ontology of Units of 
Measure and Related Concepts (OM) (Rijgersberg et al., 2013). 

Figure 3. Multi-level BMS ontology structure. 

3.1.3. Ontology Conceptualisation and Implementation 
To organise the related concepts and terminologies and develop the conceptual 
ontology, some attributes and properties are associated with “objects” and “processes” 
(Fig. 4). The ontology conceptualisation is achieved using diagrams.net (JGraph, 
2021), which allows the building of ontologies in a visualised and collaboratively 
modified way.  

Fig.4 shows the “objects” part in the proposed ontology, which includes the 
concepts and concept relationships related to “MI-level” and “component-level” BMS 
modelling. For the “MI level” calculation, the bms:Archetype is defined to populate 
each building instance’s parameters, such as MI, with matching categories. We adopted 
bms:SubPropertyOf to define the archetype based on the properties from 
bms:Ifcbuilding. The properties are building use (function), building age, and building 
location, which are typically archetype categories. To get the MI coefficients of various 
materials stored in archetype buildings, we will use bms:IdentifierInDatabase to link a 
global MI database in future versions under bms:MaterialEntity and drive MI 
retrieving. The MI databases were developed by Heeren and Fishman (2019), including 
300 MI data points (in kilograms per gross floor area) of 30 kinds of materials from 33 
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studies. The MI coefficients can be obtained from databases based on building 
properties, including building age, function, and location.   

The “component level” ontology describes all construction systems’ elements and 
building devices, their materials, and coordinating properties. To calculate the 
mass/volume of material stored in these building elements/devices, this ontology 
reused the artefacts of the SAREF ontology. The material and component properties, 
such as component thickness and material density, are grouped by mat:PropertySet 
and measured mat:Measurement. In the “process” part, the materials and component 
properties are inputted for material mass calculation. The implementation of the whole 
ontology aims to make the conceptual ontology computer-readable, which can be 
achieved in the Protégé tool (Tudorache et al., 2008), an open-source ontology editor. 

Figure 4. Conceptualisation of BMS Ontology. 

3.2. REASONING ALGORITHM DEVELOPMENT 

Based on the ontology developed, this study designed some algorithms (Fig.5) to query 
data through the ontology from data sources and conduct multi-level BMS modelling. 
When inputting a building instance, the first algorithm queries building attributes data 
(age, function, etc.) and compares it with the attributes of existing buildings stored in 
the database using Algorithm 2 marching rules. This step divides building instances 
with the same features into several groups and uses a virtual building’s (archetype) 
material properties to stand for the properties of all the buildings in this group. 
Algorithm 3 integrates the different granularity-level property data in various building 
instances and forms a complete property set for archetypes. For example, if the newly 
added building instance has component property data that the existing property set does 
not have, then the new data is added, and the vector updated. Finally, Algorithm 1 
executes BMS modelling, adapting corresponding material mass/volume calculation 
rules for the final property set. 
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Figure 5. The pseudocode of the reasoning algorithms. 

3.3. CASE STUDY AND FRAMEWORK INSTANTIATION 
This study uses four different building projects in Singapore (as instances 𝑥!, 𝑥", 𝑥# 
and 𝑥$) to conduct a case study and examine the conceptual framework proposed. 
Tab.2 summarises the property data of the four building instances collected according 
to their published information and BIM models. First, 𝑥!, a non-residential building 
built during “1990-2000”, is inputted in the framework. Second, Algorithm 1 queries 
the attributes, including the year of construction and building function of 𝑥"  and 
matches with 𝑥! , noticing 𝑥!  and 𝑥"  are both non-residential buildings completed 
during the same period. Hence, the algorithm matches them into archetype 𝐴!, which 
can share their material property vector. Then, algorithm 3 conducts a property update 
operation for archetype 𝐴!.  For instance, the updated MI will be the average value of 
the two instances (0.145), while the window-wall ratio (0.32) and window thickness 
(2.2 mm) will be added based on property data of 𝑥". The result forms an updated 
database of archetype 𝐴!  which can be used to fill the missing values for all the 
building instances in the same group as 𝐴!, and calculate concrete stock at the “MI 
level” and glass stock at the “window component level”. 

Similarly, 𝑥#  and 𝑥$	 are residential buildings completed in different periods 
compared with 𝑥!  and 𝑥" . In this way, 𝑥#  and 𝑥$		will be identified as another 
archetype 𝐴"; their material property data will contribute together to the properties 
vector of archetype 𝐴", supporting to quantify concrete at MI level, using the MI from 
𝑥$	, as well as steel in the air duct. If another instance with “window-wall ratio” data 
could be available as inputs and it is identified as belonging to 𝐴", the glass stored in 
the windows of buildings in 𝐴" can then be calculated.  
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Table 2 The information of four building instances. 

4. Result and Discussion 
The framework designed by this study provides a new paradigm for urban BMS 
quantification. However, at the current stage, this research has some limitations. First, 
as the ontology design depends on expertise, it is essential to carefully document and 
validate the framework to ensure its effectiveness and applicability. While reusing parts 
of existing ontologies, this study introduces new artefacts based on specific needs. At 
this stage, the ontology proposed in this study has yet to undergo evaluation by relevant 
domain experts. Subsequent efforts will involve organising workshops and inviting 
industry experts and scholars to evaluate the ontology and validate its design. 
Additionally, although this paper describes and presents the conceptual design of the 
framework, it has not yet been made computer readable. Also, the current ontology was 
instantiated by analysing some real building projects, but the data volume is small. 

The subsequent research will complete the implementation of the ontology and 
algorithms, including mapping data sources in OBDA, generating a virtual knowledge 
graph, and establishing links with structural databases. Once the ontology 
implementation is completed, we will gather more practical cases to explain and 
demonstrate this framework. Also, we will optimise the current “updating operation 
algorithm” by introducing a collaborative filtering technique. With increasing 
instances, collaborative filtering can assist in comparing the attributes of building 
instances within an archetype group and perform data integration, ultimately achieving 
calculation in a “building-by-building” way. This process could retain the diversity of 
buildings during BMS modelling. Simultaneously, collaborative filtering can facilitate 
the flow of information and supplement data between different archetypes, thus 
avoiding excessive lack of material attribute data of a certain archetype group. 

5. Conclusion 
In conclusion, this research proposes an innovative framework integrating ontology 
and reasoning algorithms for urban BMS modelling. Driven by an ontology model, this 
framework can support BMS modelling at various levels of detail and fully use 
currently available building data without requiring the preparation of a complete 
dataset. This framework addresses building material data limitations some regions face, 
which restricts the modelling and analysis of building stocks at the urban level. With 
the multi-level modelling capability of this framework, building data, including 
component-level data, can be fully utilised, enabling the statistical determination of 
building stocks within components. The potential for recyclability of building 
components can be better described, providing essential information and strategies for 
designing recyclable buildings. Therefore, this proposed framework offers a more 
flexible approach to choosing the level of detail in data utilisation and BMS modelling. 
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