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Abstract. This paper addresses the challenge of enhancing realism in 
virtual reality (VR) environmental design, particularly by overcoming 
the limitations of traditional 3D plant modeling methods that fail to 
capture dynamic and temporal nuances across annual seasons. The 
approach integrates realistic, time-sensitive modifications into VR plant 
modeling. It employs a methodology where source images for instant 
neural graphics primitives (Instant-ngp) are preprocessed using a Stable 
Diffusion model optimized by a Low-Rank Adaptation (LoRA) 
focusing on tree structures. This preprocessing step enriches Instant-
ngp's input data, enabling the creation of 4D plant models that exhibit 
both spatial detail and temporal dynamics, mirroring natural seasonal 
variations. Stable Diffusion and LoRA are applied beforehand to 
improve the realism of the generated models. Virtual source trees are 
utilized for testing and refining the approach, aiming to enhance the 
representation of plant models in VR environments. This research 
contributes to making VR simulations more immersive and realistic, 
with potential applications in virtual landscaping, urban planning, and 
therapeutic environments. The study acknowledges the initial nature of 
this research and the ongoing need for exploration to fully realize these 
applications' potential. 

Keywords. Neural Radiance Fields (NeRF), Diffusion Models, 4D 
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1. Introduction  
The field of environmental design has experienced noteworthy advancements, 
particularly in the realm of virtual reality (VR), wherein the precise representation of 
natural elements is essential for captivating and immersive experiences. Conventional 
plant modeling methodologies, which are typically insufficient in capturing the 
temporal and dynamic aspects of natural environments, encounter restrictions, 
particularly in interactive VR environments. 
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This paper innovatively combines artificial intelligence and neural rendering 
techniques to address these issues. Key to this method is the combination of instant 
neural graphics primitives (Instant-ngp) (Müller et al., 2022) with a secure diffusion 
model (Rombach et al., 2022), enhanced by additive networks and ControlNet (L. 
Zhang et al., 2023), and with a special focus on the LoRA model (Hu et al., 2021) for 
image refinement. This revolutionary fusion has the potential to revolutionize VR plant 
modeling by adding a temporal aspect. Instant-ngp plays a crucial role in its rapid and 
effective neural rendering, which can convert 2D images into intricate 3D plant scenes 
that are the foundation of high-quality VR simulations. The technology's capacity to 
render intricate models in real time is critical for VR applications where responsiveness 
and detail are the cornerstones of user immersion. The model's temporal aspect is 
determined by stable diffusion models that process 2D plant images, endowing the 
models with both temporal and seasonal changes. Such models expertly handle noise 
and yield an array of visual outcomes, realistically imitating fluctuating environmental 
conditions - features that traditional methods have historically failed to assimilate.  

In addition, the innovation of this study is demonstrated by the data set of plants 
specifically trained for the LoRA model, a step that greatly improves the quality and 
fidelity of the model. The effect is further enhanced by the selection of an appropriate 
ControlNet integration into the extended network. Through this collaboration, 4D plant 
models can be generated - 3D structures that change over time and mimic the dynamics 
of real plants. This method enables the creation of accurate plant models that can be 
utilized in various applications, including future scenarios such as virtual landscaping, 
urban planning, and therapeutic VR environments. 

This method surpasses conventional modeling techniques by offering a more 
engaging and interactive VR environment design experience. The resulting 4D plant 
models not only enhance the visual realism of VR environments but also introduce 
elements of time-based variation and interactivity that were previously unachievable in 
VR plant modeling, marking a noteworthy advancement in the field. 

2. Related works 

2.1. TRADITIONAL PLANT MODELING METHODS 
While traditional plant modeling methods such as procedural modeling  (Talton et al., 
2011), mesh modeling (Pavllo et al., 2021), L-systems (Ruoxi Sun et al., 2009) and 
point cloud modeling (Bournez et al., 2017) have been fundamental in representing 
vegetation, they have significant limitations in VR environments. These techniques 
often fail to capture the organic randomness and dynamic aspects essential for 
immersive VR realism. The labor-intensive nature of mesh modeling, the complexity 
of L-systems, and the high cost and extensive data processing of point cloud modeling 
render them inadequate for dynamic, large-scale ecosystems in VR, creating a gap in 
achieving a realistic and interactive virtual representation of natural environments. 

2.2. NEURAL RENDERING TECHNOLOGIES 
Neural rendering technologies, including neural radiance fields (NeRF) (Mildenhall et 
al., 2020) and Instant-ngp, have greatly enhanced the creation of 3D scenes and models 
from 2D images by merging computer vision with deep learning techniques to improve 
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realism and efficiency. NeRF utilizes a deep learning model to scrutinize a set of 2D 
images taken from varying angles and constructs a volumetric scene representation 
(Mildenhall et al., 2020). The NeRF model predicts the color and density of light in 
space, which enables the creation of new scene perspectives beyond the original images 
(Lin et al., 2022). Instant-ngp, created by NVIDIA Research, significantly reduces both 
the training and inference times of models such as NeRF (Müller et al., 2022). 
Additionally, an interactive GUI with a VR mode provides the ability to view 
neurographic primitives through a VR headset, thus enabling real-time applications, 
and amplifying its suitability for tasks such as scene reconstruction (Instant Neural 
Graphics Primitives, 2022/2023).  

However, despite these advancements, a significant research gap remains. The 
challenge lies not just in harnessing these technologies for static scene reproduction, 
but in dynamically integrating them within VR environments for plant modeling. 
Current applications of NeRF and Instant-ngp primarily focus on static scenes, lacking 
the capability to simulate the temporal and seasonal variations intrinsic to plant life. 
Plants in the real world exhibit complex behaviors: they grow, the color of their leaves 
changes with the seasons, etc. Capturing these dynamic changes in VR requires the 
technical capabilities to render these changes in real time. 

2.3. STABLE DIFFUSION MODEL AND COMPARISON WITH GENERA-
TIVE ADVERSARIAL NETWORKS (GANS) 
Stable diffusion models excel in generating realistic and diverse images (Borji, 2023), 
providing an alternative to GANs (Goodfellow et al., 2014), which sometimes suffer 
from mode collapse and low diversity. While stable diffusion models excel in variety 
and complexity, the research gap lies in the effective application of these models, along 
with addition networks, LoRA, and ControlNets, for 4D plant modeling in VR.  

LoRA is chosen for its ability to adapt large models efficiently without extensive 
retraining, making it ideal for iterative VR modeling. ControlNets, on the other hand, 
offer superior control over the generated outputs, crucial for the precise depiction of 
plant seasonal changes. This combination not only enhances image quality but also 
introduces temporal dynamics into the modeling process. This integration is pivotal for 
creating immersive VR environments, where interactive elements and temporal 
changes are key.  

3. Proposed Method 
This study introduces a system designed to create dynamic, 4D representations of 
plants within a VR environment, capable of simulating seasonal changes.  

3.1. THE MAIN PROCESS OF THE SYSTEM 
The process involves several key steps, as shown in Figure 1: 

1. Video Capture: A comprehensive video of the intended plant is recorded to 
ensure full coverage from every angle. Plants, within the scope of video production, 
can be categorized as either real or virtual. This is achieved by filming over a full 360-
degree rotation at a consistent speed. 

2. Frame Extraction: The video is fragmented into frames using FFmpeg (FFmpeg 
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Developers, 2016). The count of frames obtained is reliant on the length of the video, 
intending to secure over 200 frames to facilitate comprehensive scrutiny. 

3. Image Processing and Analysis: 3.1.a. Preliminary Analysis for 3D 
Reconstruction: The initial phase of processing involves crucial steps like feature 
extraction, feature matching, and camera pose estimation. These steps are foundational 
for creating a 3D reconstruction of the plant. While this can be achieved using various 
software tools, one such example is COLMAP (Schonberger & Frahm, 2016). 
However, it's important to note that these processes are not exclusive to COLMAP and 
can be effectively conducted using other structure from motion (SfM) software. The 
choice of tool depends on specific project requirements and available resources, 
allowing flexibility in approach while adhering to the underlying principles of image 
processing and analysis 

3.1.b. Creating 3D Scenes with Instant-ngp: These frames, along with the data 
derived from COLMAP, are input into Instant-ngp. This step generates a realistic 3D 
rendition of the plant, which can be explored in VR, offering real-time interaction and 
the ability to modify various aspects like lighting and viewpoint. 

3.2.a. Seasonal Transformation via Stable Diffusion: Separately, frames are input 
into Stable Diffusion to generate images of the plant in different seasonal states. 
Techniques like LoRA in the additional networks are utilized for accurate seasonal 
depiction, while ControlNet maintains the plant's structural integrity and orientation 
relative to the background. 

3.2.b. Integrating Seasonal Changes in 3D Scenes: The seasonally transformed 
images, combined with the data from the COLMAP analysis, are then processed 
through Instant-ngp. This step creates a detailed 3D scene reflecting the plant in various 
seasons. 

4. Switching Scenes User Interface: The system comes with a web-based user 
interface (UI) crafted for this study. It enables the user to seamlessly switch between 
various seasonal VR plant representations, enhancing their interactive experience. 

 

 
Figure 1. 4D generation system for plants in VR environments. 
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3.2. TRAINING FOR LORA 
The system produces 4D plant models from 2D images, where temporal changes are 
integrated into 3D models through Stable Diffusion for seasonal transformations. The 
aim is to create desired outcomes that accurately reflect the text descriptions. LoRA's 
efficiency in training and low computational demands provide significant benefits. The 
first step is to prepare more than 50 images of plants, consistently styled and in 
moderate resolution, across seasons. These suitable images are adjusted to the standard 
512x512 pixels due to their varying sizes. The BLIP neural network automatically 
labels these images, which are then stored in a text file. The Koyha_ss framework 
(bmaltais, 2022) is used for training due to its dataset compatibility and performance. 
The final model is selected based on analyzing the result plots from each LoRA model, 
with emphasis placed on their weights and effectiveness, rather than solely on loss 
results. 

3.3. USAGE OF CONTROLNET IN STABLE DIFFUSION 
ControlNet is an AI image generation plug-in that enhances standard image generation 
techniques by offering more accurate control.  

The study employs three distinct models: the first emphasises edge detection and 
converts uploaded images to line drawings while preserving the composition in the 
newly generated image. The second model highlights depth and enables a more precise 
reproduction of the image's 3D structure. Finally, the system utilises a model to identify 
and categorise distinct parts of the image. By utilising these models, ControlNet can 
produce images that are abundant in detail and context. 

4. Results 
Software-generated plants were employed as targets to test the system's efficacy. Table 
1 provides a comprehensive account of the equipment, software, and model versions 
utilised in this study, along with detailed parameters employed for the training of the 
LoRA model. 
 

Table 1. Equipment software and parameters used. 

PC spec for verifications: self-
made 

Parameters for LoRA training 

CPU Intel Core i5-11400 LoRA type Standard 

GPU NVIDIA GeForce 
RTX 3060 Ti 

LR Scheduler Cosine_with_re-
starts 

RAM DIMM 16 GB LR warmup (% of 
steps) 

10 

Analytical Model & Software Optimizer AdamW8bit 

FFmpeg Version: 5.1.2 Max resolution 512,512 

COLMAP Version: 3.7-win-
dows-no-cuda 

Network Rank 
and Alpha 

128,128 
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Furthermore, the system is versatile enough to be used in both virtual and real 

environments. For the purposes of this study, virtual plants are used as a representative 
example. This approach is primarily due to the challenges associated with collecting 
comprehensive data from real plants across all seasons.  

The selection of a summer maple for photographic data collection to train the LoRA 
algorithm was driven by its advantageous characteristics: the distinctive leaves and 
branching patterns of the summer maple provide clear, consistent data points ideal for 
algorithmic analysis. Its lush summer foliage ensures seasonal consistency, providing 
a rich data set. The tree's common presence and photogenic nature facilitate 
accessibility and high-quality image capture, critical for effective algorithm training. 
These contribute to a robust and diverse dataset, improving the accuracy and efficiency 
of the LoRA algorithm. Such data is imperative for generating precise and varied 
simulated models.  

Figure 2 highlights the LoRA model's effectiveness within the Stable Diffusion 
framework, showcasing the target plant across different seasons—spring, autumn, late 
autumn, and winter. Table 2 lists all parameters applied, further illustrating the seasonal 
variations of plant imagery as discussed in section 3.2.b. 

Figure 2. Stable Diffusion-generated plant photos for each season. 

Table 2. Table of Parameters Used in the Stable Diffusion 
Parameters            

Steps                26 Size                  1920x1080 

Denoising 
strength                  

0.33 Model hash        ca2e3bd9f9 

CFG scale              10 Model                landscapeRealistic_v20WarmColor 

Instant-ngp RTX-3000-and-
4000 

Total steps 2000 

Stable 
diffusion 

Version ID: baf6946 Train batch size 1 

Additional 
networks 

Version ID: e9f3d62 Epoch 1 

ControlNet Version ID: 3011ff6 Regulatization 
factor 

1 

Kohya_ss Version 2.0 Mixed_precision fp16 
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Seed                  3373
1330
97 

Sampler   DPM++ 2M SDE Karras 

Spring Prompt         green leaf, bare tree, <lora:winter:0.2> 

Autumn Prompt        yellow leaf, <lora:maple_autu:0.6> 

LateAutumn Prompt     maple tree, <lora:maple_autu:0.6> 

Winter Prompt         bare tree, <lora:winter:0.6> 

Negative prompt       ground, background, trunks, branches, tree roots, small 
trees, people, other trees, classifier for paintings etc, 
background, building, trunks, branches, small trees, grass, 
mountains, lake, sloping land, kkw-Autumn 

ControlNet 0           Module: canny, Model: None, Weight: 1.2, Resize Mode: 
Resize and Fill, Low Vram: False, Processor Res: 512, 
Threshold A: 100, Threshold B: 200, Guidance Start: 0, 
Guidance End: 1, Pixel Perfect: False, Control Mode: 
ControlNet is more important 

ControlNet 1         Module: depth_midas, Model: None, Weight: 1, Resize 
Mode: Crop and Resize, Low Vram: False, Processor Res: 
512, Guidance Start: 0, Guidance End: 1, Pixel Perfect: 
False, Control Mode: Balanced 

ControlNet 2          Module: seg_ofade20k, Model: None, Weight: 1.25, 
Resize Mode: Crop and Resize, Low Vram: False, 
Processor Res: 512, Guidance Start: 0, Guidance End: 1, 
Pixel Perfect: False, Control Mode: ControlNet is more 
important 

 
Figure 3 showcases results from three ControlNet models used in this study. The 

right image demonstrates the Canny model's ability to capture tree edges by converting 
images into line drawings, maintaining composition consistency. The center image 
shows the depth analysis model's accurate 3D tree structure replication via depth map 
extraction and layout reconstruction. This model also segments the image into tree and 
background pixels, as displayed in the right panel of Figure 3. 

 

Figure 3. Comparative Results of ControlNet Models – Edge Detection, Depth Analysis, and 
Semantic Segmentation. 
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Table 3. Comparative analysis of image quality metrics. 

  Spring                                                                                       Autumn Late autumn                                                                                 Winter 

PSNR 31.512 39.468 39.455 29.366 

SSIM 0.952 0.965 0.848 0.733 

LPIPS 0.457 0.398 0.432 0.589 
 
The quality of these scenes is evaluated using peak signal to noise ratio (PSNR), 

structural similarity index (SSIM) (Hore & Ziou, 2010), and Learned Perceptual Image 
Patch Similarity (LPIPS) (R. Zhang et al., 2018) metrics, chosen for their detailed 
assessment over simpler methods. PSNR gauges perceptual errors, SSIM measures 
visual changes, and LPIPS evaluates nuanced perceptual differences via deep learning. 
The process starts with Instant-ngp converting 2D images into a 3D scene, focusing on 
light and color details. Reference frames set comparison standards, with Instant-ngp 
aligning frames to these benchmarks. PSNR identifies peak errors (higher values mean 
better quality), SSIM checks for visual similarities (closer to 1 is better), and LPIPS, 
using deep learning, prefers lower scores for closer original image resemblance. 
Random frame selection ensures unbiased evaluation across various scenes. Results 
show Instant-ngp's high-quality images, as illustrated in Table 3, with visual 
demonstrations of its capability to depict real seasonal changes in VR. 

Figure 4. The state of the target plant in the VR environment in all seasons. 
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Furthermore, Figure 4 shows the target plants in Instant-ngp in different seasons as 
seen through a VR headset, further demonstrating the success of the system in creating 
real seasonal changes. 

5. Discussion 
The investigation into digital tree modeling within virtual environments has unveiled 
significant insights into the modeling process. Yet, it is recognized that such controlled 
conditions may not fully represent the complexities of natural environments, 
potentially impacting the applicability of these techniques to real trees. For example, 
the consistency of backgrounds that benefits the Instant-ngp process might not translate 
well to the varied backgrounds of real-world settings, potentially affecting model 
accuracy and effectiveness. 

A notable advantage of employing a virtual original reference tree is its utility as a 
benchmark for evaluating the NeRF model. This approach allows for a direct 
comparison between the virtual reference and the NeRF models, offering a valuable 
method for assessing model fidelity. The current study's lack of this comparative 
analysis represents a limitation, suggesting future research should include detailed 
comparisons to enhance model validation and provide a more robust layer of validation 
for the modeling process. 

While the system shows promise for 4D plant observation in VR, it faces some 
limitations, such as only being able to simulate a single plant at a time, which is not 
ideal when trying to simulate multiple plants at once in larger, more complex 
environments. These challenges highlight the need for future research that focuses on 
integrating semantic segmentation model enhancements to improve accuracy. In 
addition, there is a need to improve the accuracy of modeling plants in different seasons 
in VR environments to reduce uncertainty and increase the fidelity of seasonal 
transitions, thus enhancing the overall realism of the VR experience. 

6. Conclusion 
This research significantly improves 4D scene reduction and plant modeling in VR 
environments, by integrating NeRF with stable diffusion techniques to capture 
temporal changes in 3D scenes. The key achievement is the enhanced ability to depict 
temporal changes in 3D scenes, resulting in more realistic and detailed VR simulations 
of plants across different time periods. The study's findings demonstrate a significant 
improvement in the depth and authenticity of plant modeling in VR environments. This 
progress not only offers more immersive and accurate representations of plant behavior 
but also has implications for broader scientific research and enhancing user experiences 
in VR. The study contributes to the development of more advanced and realistic VR 
simulations, offering potential benefits in fields such as botany, ecology, and 
interactive education. 
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