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Abstract. With the advancement of mathematics and computer 
science, deep learning-based generative design for floorplans has 
increasingly garnered attention among researchers. This study proposes 
a graph-based deep learning model, graph2pix (G2P) to synthesize 
floorplans guided by user-defined constraints. By incorporating room 
area and type information into the nodes of the graph, G2P can generate 
floorplans tailored to specific user requirements. It contains three sub-
models: the Translator, Generator, and Discriminator. The Translator 
serves as the foundational layer, interpreting and mapping room 
information into a coherent building boundary. Following this, the 
Generator takes the helm, synthesizing this information to formulate a 
preliminary floorplan layout. This layout is further refined and 
evaluated by the Discriminator, ensuring that the final output maintains 
a high degree of fidelity both to the user's constraints and to 
architectural feasibility. Our empirical investigation, utilizing metrics 
such as "area error" and "adjacency error", underscores the model's 
exceptional ability to achieve user tasks with a high degree of accuracy 
and efficiency. These findings underscore the potential of G2P as a 
transformative tool in the domain of automated architectural design. 

Keywords.  Floor Plan Generative Design, Graph to Image Generative, 
Graph Neural Network, Room Information Addition, Conditional 
Generative Adversarial Network. 

1. Introduction 

The architectural design process is an intricate and labour-intensive endeavour, 
governed by a detailed design brief that provides essential information. This 
necessitates architects to engage in planning of various architectural elements including 
room layouts, floor plans, and façade designs. Equipped with foundational data such 
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as the types and areas of rooms, architects are tasked with the precise delineation of the 
size, shape, and spatial relationships of each room. These elements are strategically 
arranged to create a layout that is both coherent and functional, ensuring the alignment 
of architectural design with the envisaged utility and aesthetic goals. In the early stages 
of architectural design, architects are often required to generate multiple initial 
proposals based on the requirements of a detailed design brief. Subsequently, through 
a process of meticulous refinement and modification, a selection of these proposals is 
chosen for further detailed design. 

In the realm of generative design assisted by computational methods, researchers 
typically encode established norms and principles into algorithmic directives, enabling 
Computer-Aided Design (CAD) systems to generate architectural layouts that conform 
to recognized best practices. Utilizing computer's advanced computational power 
enables rapid provision of numerous design options for architects, significantly 
boosting design efficiency. In recent years, with the advancement of artificial 
intelligence, and more specifically, AI-generated content, there has been a growing 
interest in using deep learning algorithms for the generation of architectural floorplans. 
Researchers have employed Generative Adversarial Networks (GANs) to create 
building floorplans based on architectural outlines (Wu et al., 2019), (Hu et al., 2020), 
(Sun et al., 2022). Although this approach can produce highly detailed models, it 
diverges from the traditional design practices and workflows followed by architects. 
Architects typically arrange and combine rooms based on their area and 
interconnections, rather than first delineating an outline, and then filling in different 
rooms accordingly. Therefore, deep learning models for floorplan generation should 
ideally only incorporate the most fundamental requirement information as input: 
number of rooms, room types, room areas, etc. Models that use architecturally 
processed information like building outlines as input may not effectively alleviate the 
design burden of architects. 

To address these challenges, some researchers have shifted to using different deep 
learning models, employing more primitive information such as architectural function 
bubble diagrams or adjacency graphs, rather than architectural outlines, for floorplan 
generation. Figure 1 shows the input and output of the deep learning models built by 
different researchers. 

Figure 1. Inputs and outputs of deep learning models used in related literature 

As shown in Figure 1, Veloso et al. (2022) continued to utilize the pix2pix 
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framework, transforming architectural function bubble diagrams into images to serve 
as model inputs for generating floorplans. These diagrams represent the intended 
function and approximate size of each room, allowing architects to provide input 
without having to draw precise outlines; they only need to simply sketch approximate 
room locations to obtain feasible floor layouts. Nauata et al. (2020 & 2021) represented 
rooms adjacency information as graphs and employed Graph Neural Networks (GNNs) 
to generate architectural floorplans (vector floorplan) that comply with the constraints 
of these adjacencies, further reducing the workload of architects and enabling the 
generated floorplans to reflect the connectivity between rooms. Upadhyay et al. (2023) 
combined GNNs with GANs to develop a deep learning model that also takes rooms 
adjacency information as inputs and produces architectural floorplan images (in image 
format). Shabani et al. (2023) proposed a method for generating vector floor diagrams 
through diffusion models, utilizing a transformer architecture. This architecture 
controls attention masks based on input graphic constraints and generates architectural 
floorplans (vector floor diagrams) directly through a process of discrete and continuous 
denoising. 

This study builds upon the foundation of room adjacency information based on 
graphs by embedding additional information such as room area and room type into the 
nodes of the graph. Compared to existing studies, this research introduces a method 
that ensures generated floor plans simultaneously meet adjacency relationships and 
area requirements, addressing the issue of existing models' inability to quantitatively 
control the generated room areas. Furthermore, this approach obviates the need for 
architects to input building outlines, better aligning with the design process. 
Consequently, this enhancement significantly improves the applicability of the model. 
The resulting floorplans are more controllable and more closely aligned with the needs 
of architects, reducing the workload associated with design processes. 

2. Problem Formulation 

In the standard architectural design process, clients provide architects with a brief 
containing specific design parameters, such as total building area, types and numbers 
of rooms, and the area of each room. Initially, architects create function bubble 
diagrams based on the client's requirements. Subsequently, each 'bubble' is assigned 
area information and transformed into various shapes. Finally, through a process of 
design exploration and iteration, these are converted into architectural floorplans. To 
comprehensively incorporate the requirements detailed in the design brief into the deep 
learning model, enabling controlled generation of floorplans with respect to area and 
room adjacency relationships, this study amalgamates the concepts of GNNs and 
GANs. A novel deep learning architecture is proposed, encompassing Translator, 
Generator, and Discriminator components, aimed at accomplishing production-level 
tasks. 

INPUT: The input to the model is a building bubble diagram, which is represented 
as a graph where a node encodes a room with its room type and room area. Room 
adjacency is depicted by edges connecting the respective nodes, providing a graph-
based representation of the floorplan's layout. The building's total area and the building 
ratio, which is the footprint area as a proportion of the total lot area, are also provided 
to inform the generative model of the overall scale and density of the structure (shown 
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in Figure 2). The model input is formalized as three matrices: a feature matrix 𝑋𝑋 
encoding room areas and types, a sparse adjacency matrix 𝐴𝐴  representing room 

connectivity, and a global matrix 𝐺𝐺 detailing the building's area and aspect ratio. These 
matrices provide a structured representation for the generative model to produce 
building floorplans. 

Figure 2. The information contained in the input and its expression 

OUTPUT: The output of the proposed model is a detailed architectural floorplan, 
rendered as a 256x256 pixel image. In this discretized spatial representation, distinct 
colours correspond to different room types, facilitating immediate visual 
discrimination of the various functional areas within the building. This color-coding 
scheme is predefined (shown in Figure 3) and consistent across all generated floorplan 
images, ensuring uniformity and ease of interpretation. The resolution of the output 
image has been chosen to balance the need for detail against computational efficiency, 
providing sufficient granularity to discern room boundaries and configurations while 
maintaining a manageable image size for model processing. 

Figure 3. Color-coding scheme (dataset from RPLAN: Wu et al., 2019) 

3. Technical Innovations 

In this study, the input contains room and building information, whereas the output is 
a pixelated image representation. Given the variability in room count per building, the 
input matrices are of variable dimensions, a format not inherently accommodated by 
traditional GANs. As shown in Figure 4, to address this, this study introduces a Graph 
Neural Network-GAN (GNN-GAN) architecture that facilitates the mapping from 
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graphs of arbitrary size to structured images. Also, it is noteworthy that the input and 
output exhibit substantial differences in scale, a factor that could degrade the quality of 
the generated images due to insufficient feature extraction, potentially resulting in 
outputs that do not meet to the input constraints. 

To address these challenges, this study introduces a novel network architecture, 
named "Translator", designed to encode room and building information and predict the 
corner points of the layout boundary. Subsequently, these predicted boundaries, along 
with the encoded information, are fed as conditional inputs to both the Generator and 
Discriminator of a GAN framework. Experimental results indicate that this hierarchical, 
phased output approach effectively mitigates issues stemming from the significant 
disparity in data scale between inputs and outputs. 

Figure 4. Overall framework of the proposed GNN-GAN model 

3.1. FRAMEWORK OF THE TRANSLATOR 

As shown in Figure 5, the Translator (T) is composed of an encoder and multiple 
decoders. The encoder, leveraging a graph attention mechanism coupled with Long 
Short-Term Memory networks (LSTM), processes the input room and building 
information (𝑋𝑋, 𝐴𝐴, 𝐺𝐺) to generate a coded information. This information, along with 
the LSTM's hidden state, is then fed into the decoders, as illustrated in the left part of 
Figure 6. The decoding process is iterative and recursive, with each decoder outputting 
the position of a single vertex of the building contour until the contour is complete. A 
standard decoder unit, as shown in the lower right of Figure 6, includes an LSTM layer 
that receives the encoded information and hidden state from the encoder, as well as the 
prediction from the preceding decoder (with the initial decoder receiving a zero value). 

The point set outputted by the Translator is utilized to render a 256x256x1 binary 
image, with pixel values of 0 or 1, delineating the architectural contour. Concurrently, 
an Intersection over Union (IoU) Loss, calculated between the generated contour and 
the ground truth, is employed as the loss function for the Translator, enabling the 
optimization of the network towards precise contour delineation. 
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Figure 5. Framework of the Translator 

Figure 6. Framework of the encoder and decoder in the Translator 

3.2. FRAMEWORK OF THE GENERATOR AND DISCRIMINATOR 

Figure 7 illustrates the framework of the Generator (G) and Discriminator (D) within 
our proposed GAN model. Both G and D are equipped with an encoder-decoder 
structure. For the Generator, its encoder processes the input room and building 
information (𝑋𝑋, 𝐴𝐴, 𝐺𝐺), encoding them into a compressed latent space. The encoded 
information is then passed through to the decoder, which will also receive the 
256*256*1 building boundary image. In the case of the G, the decoder's task is to 
construct a plausible building layout, which takes the form of a 256*256*3 RGN image 
representing the floorplan. For the D, the decoder assesses whether the generated layout 
is authentic (Y) or not (N), based on the learned representations. This adjudication is 
predicated on discriminative features learned during training, enabling the 
Discriminator to effectively differentiate between genuine and synthesized designs. 

Figure 7. Framework of the Generator and Discriminator 
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It is important to note that both the G and D leverage a shared parameterization 
within their respective encoders. This parameter sharing is strategic, ensuring that both 
G and D utilize identical feature representations derived from the input data. By 
employing this architecture, we enhance the Discriminator's capacity to discern 
between genuine and synthesized designs. The shared encoder framework not only 
facilitates a more efficient learning process by reducing the number of free parameters 
within the system but also encourages a more nuanced feature extraction, leading to 
improved generalization of the Discriminator. This shared parameterization 
underscores the synergetic learning dynamics between G and D, integral to the 
adversarial training regimen that underpins the GAN's ability to generate compelling 
architectural layouts. 

Figure 8. Framework of the encoder and decoder in Generator and Discriminator 

Analogous to the Translator (T) network, the encoders within both the G and D 
incorporate a graph attention-based network structure. This design enables the 
encoding of room and building information into a latent space, effectively capturing 
the complex interdependencies and features present in the input data. However, distinct 
from T, the encoding processes in G and D do not involve sequential data output, and 
therefore, their architectures omit the LSTM layers. The exclusion of LSTM layers 
from G and D's encoders is aligned with the nature of their decoding tasks, which do 
not require processing temporal or ordered data, thus streamlining the architecture for 
the specific demands of generating and discriminating static images (shown in Figure 
8 upper part). 

Figure 8 also showcases the distinct frameworks of the decoders for the G and D, 
positioned in the lower left and lower right of the figure, respectively. The decoder of 
G is structured as a multimodal U-net, which utilizes the building boundary generated 

145



Z. HAN, X. LI, Y. YUAN AND R. STOUFFS 
 
 

by the Translator (T) along with the encoded information as inputs to synthesize the 
floorplan. On the other hand, the decoder of D adopts a multimodal Patchnet design, 
which processes the encoded information in conjunction with either the generated 
floorplan from G or the ground truth data to execute its adjudication function. This 
configuration allows D to determine the veracity of the floorplans by examining 
localized patches, providing a granular assessment of authenticity. 

4. Experimental Result 

This study uses MATLAB for implementation and a workstation with Xeon CPUs and 
Nvidia Tesla V100-32GB. The GNN-GAN model uses ADAM optimizer and is 
trained for 120k iterations. The learning rates of the translator, generator and 
discriminator are 0.0001, 0.00001, 0.00001, respectively. The batch size is 10. And the 
model uses leaky-ReLUs (𝛼𝛼 = 1) for all activate functions. 

Figure 9. Framework of the encoder and decoder in Generator and Discriminator 

"Area error", "Adjacency error" and "Node error" are used to evaluate the 
performance of the proposed model. The "Area error" represents the relative error 
between the input demanded area and the generated area. It serves as a measure of the 
model's precision in conforming to the spatial dimensions dictated by the design criteria:  
         (1) 
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where n is the number of rooms, 𝑅𝑅𝑖𝑖 is the area of room 𝑖𝑖, 𝑅𝑅�𝑖𝑖 is the area of generative 
room 𝑖𝑖. The "Adjacency error" and the "Node error", respectively, count the number 
of rooms in the produced floorplan that fail to comply with the adjacency matrix 
constraints and the number of missing or redundant rooms, reflecting the model's 
fidelity to the prescribed room-to-room spatial relationships.  

In figure 9, the model demonstrates the capability to generate diverse floorplans 
tailored to varying requirements. It not only adheres to the specified adjacency 
relationships among rooms but also responds adaptively to the area demands of 
individual rooms. Furthermore, the model exhibits a nuanced approach to floorplan 
generation; for inputs with identical adjacency relationships but differing room areas, 
it produces distinct floorplans with unique configurations, rather than resorting to mere 
scaling of room dimensions. This indicates the model's sophisticated understanding of 
spatial constraints and its ability to generate architecturally viable layouts beyond 
simple geometric transformations. The ability to produce varied layouts from the same 
topological constraints underscores the model's potential utility in architectural design, 
offering a tool that can accommodate a broad spectrum of design scenarios and site-
specific conditions. 

5. Conclusion 

In this study, we propose a novel deep learning model for floorplan generation that 
takes room adjacency, room area, building area, building ratio as input variables. 
Departing from traditional pix2pix frameworks that rely on building contours as input, 
we establish an innovative Graph Neural Network-Generative Adversarial Network 
(GNN-GAN) architecture. We introduce the "Translator", a component designed for 
generating building boundaries, effectively addressing the issues of image distortion 
and non-compliance with input constraints due to the significant magnitude 
discrepancy between input (building information) and output (floorplan). 

Our model advances the state of the art by embedding information such as room 
area and type into the graph nodes, which permits precise control over room 
dimensions, aligning the generated floorplan more closely with architects' 
specifications. Furthermore, by incorporating building area and aspect ratio into the 
global information, architects can manipulate the overall shape of the generated 
floorplan to better suit site-specific requirements. Experimental validation confirms the 
efficacy of our proposed model, demonstrating its ability to fulfil professional demands 
in architectural design with heightened accuracy and relevance. 

Despite the advancements introduced by the proposed model, there remain certain 
limitations that merit attention. Notably, the generated floorplans occasionally lack 
detail, particularly in the articulation of door placements, which are not rendered with 
sufficient precision. Additionally, there are instances where the quantity and types of 
rooms produced do not align with the specified input constraints. These discrepancies 
highlight areas for further development. Future research endeavours will focus on 
refining the granularity of the output, enhancing the sophistication of the model's ability 
to represent minute architectural features. Moreover, a deeper extraction of features 
from the input data will be crucial to ensure that the generated floorplans adhere more 
strictly to the given constraints. Addressing these challenges is essential for bridging 
the gap between automated floorplan generation and the nuanced requirements of 
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architectural design.  
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