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Abstract. The construction industry plays a critical role in global 
resource consumption and greenhouse gas emissions, highlighting the 
urgent need for sustainable development practices. However, a key 
challenge in this area is the lack of effective models for resource use 
that align with circular economy principles.  This gap hinders efforts to 
achieve sustainable resource management, especially in the face of 
increasing urbanization and material demand. To address this issue, our 
study presents a Parametric Predictive Model (PPM) to improve 
resource efficiency, specifically targeting the often-underestimated 
building systems. The model takes a bottom-up approach, utilizing 
local databases to accurately assess material stocks of building systems, 
thereby improving the granularity of data on material composition. 
Using advanced machine learning algorithms, the model processes both 
categorical and non-categorical data. The output, an enriched 
comprehensive database can support more informed decision making in 
sustainable resource recovery and allocation, but also contribute to the 
broader goals of reducing waste and promoting resource efficiency in 
the built environment. 

Keywords.  Building Systems, Building Stock Modelling, Predictive 
Model, Circular Economy, Parametric Model. 

1. Introduction 

The construction industry significantly impacts global resource consumption, energy 
use, and greenhouse gas (GHG) emissions and faces challenges due to increasing 
material demand and the escalating urbanization dilemma. The United Nations and the 
Intergovernmental Panel on Climate Change (IPCC) (Hamilton et al., 2020; Rogelj et 
al., 2018) emphasize the urgency of sustainable urban development and transitions in 
construction practices to mitigate climate change effects. The circular economy (CE) 
is defined as a regenerative approach aiming to maximize resource utility and value 
(ARUP, 2016).  
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Building Stock Modelling (BSM) serves as the core to fulfill the CE concept and 
allows for material management (Pasichnyi et al., 2019). It predicts future availability 
by measuring the materials in a system and facilitates effective management. The top-
down approach using generalized archetypes, is fast and scalable but lacks traceability 
of specific building components and precision and may not suit all cultural and 
economic contexts. In contrast, the bottom-up 'building-by-building' method provides 
a detailed analysis of each building's material flows, offering greater precision and 
potential for future monitoring, though it is more costly and complex (D’Alonzo et al., 
2020). Moreover, current study focuses mainly on heavy materials like concrete, often 
overlooking building systems which are lightweight but play an important role in total 
building emissions (Hoxha et al., 2021). While repurposing them might not always be 
economical, the easy disassembly nature of metallic parts offers practical, 
environmentally beneficial solutions.  

The implementation of CE strategies in the building sector is hampered by the lack 
of comprehensive material inventory data and the lack of modern digital models for 
buildings facing demolition (Leao et al., 2001). The application of machine learning 
(ML) for assessing old buildings and facilitating material reuse is impeded by data 
scarcity. For instance, in Switzerland, although numerous public databases exist, 
obtaining detailed building data for material estimation and identifying reusable 
materials remains a challenge. Manual data collection is time-consuming, inefficient, 
and often impractical(Verellen & Allacker, 2020).  

Sustainable building solutions involve integrating ML-based predictors with 
parametric modelling for decision making (Murphy, 2012). However, data from old 
buildings should be carefully considered to avoid losing valuable insights. Expanding 
databases with highly accurate ML predictions will improve material estimation and 
building stock modelling. Parametric modelling, which relies on parameters and 
equations (Davis, 2013), is meanwhile built by incorporating expert knowledge of 
building system, and can provide design flexibility, simplification of the design 
process, and accuracy by complying with the design rules. 

This research was supported and funded by the Future Cities Laboratory (FCL) and 
is part of a work package focusing specifically on Switzerland case study. In this paper 
this was addressed by combining comprehensive datasets with advanced modelling, 
particularly in complementing BSM at the component level. This enabled accurate 
material estimates and efficient planning for material recovery, and optimizing 
resource use (Röck et al., 2018). The proposed methodology reduces data dependency, 
allowing it to be widely used with minimal dataset requirements and to predict larger 
quantities of materials at lower computational cost. The adaptability of the parametric 
model makes it a versatile open-source platform capable of integrating a wide range of 
building components and evolving to meet future needs. The results of the study will 
be further validated with a smaller sample dataset and a reuse potential framework will 
be developed to provide insight into material reusability, marketability, and 
comprehensive reuse guidelines.  

2. Methodology 

 Parametric Predictive Modelling (PPM) development in the Python environment 
consists of two main components. First, the predictive model generation begin with 
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compiling the existing federal building database (Die Schweiz in 3D, n.d.; Home / 
GEAK, n.d.; Swiss Geoportal, n.d.; Office, 2023), and the missing data is divided into 
non-categorical and categorical subsets. For non-categorical data such as building 
dimensions and year of renovation, a linear regression algorithm from the Scikit Learn 
(Pedregosa et al., 2011) toolkit is used. For categorization of building types and energy 
systems, a neural network implemented in PyTorch is used (Paszke et al., 2019). 
Secondly, the parametric model integrates key parameters from the database and 
generates material quantities by following building system design principles and expert 
knowledge. Figure 1 illustrates the general workflow and the relevant information 
exchanged between each step. 

Figure 1. Workflow Diagram of Parametric Predictive Model (PPM) Development 

The main categories considered were HVAC, electrical and plumbing systems.  
PPM initially features selected equipment such as radiators, boilers, ventilation ducts, 
plumbing, and electrical cables, which are chosen based on reuse experience and metal 
content, with high reuse potential that could provide significant carbon savings 
opportunities through reuse.  

2.1. PARAMETRIC MODEL DEVELOPMENT 

The parametric model development is demonstrated in this subsection, taking radiators 
as an example. The model assumes its quantity in a heated room is based on the heating 
system type and presence. The total weight of radiators in a building is calculated by: 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 = 𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 × 𝑊𝑊𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 

The number of radiators is estimated using the heated area, number of rooms, or 
building's heating energy consumption, with a factor indicating one radiator per room 
(Bornhoft, 2024). The final count of radiators compares the number calculated by the 
number of rooms with that calculated by the size of the building or heating demand to 
ensure accuracy. 

𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑢𝑢𝑢𝑢𝑟𝑟𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡 ,𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,#𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟) 

𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡 =  𝐴𝐴𝑢𝑢𝑢𝑢𝑟𝑟𝑡𝑡/(𝑅𝑅𝑅𝑅 × 𝐻𝐻𝐻𝐻𝑅𝑅) 

𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,#𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟 = 𝛼𝛼𝑁𝑁𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟 + 𝑁𝑁𝑘𝑘𝑟𝑟𝑡𝑡𝑘𝑘ℎ𝑎𝑎𝑢𝑢 

𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑏𝑏𝑢𝑢𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑢𝑢𝑏𝑏 = 𝑄𝑄ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑢𝑢𝑏𝑏,𝑏𝑏𝑢𝑢𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑢𝑢𝑏𝑏/(𝑇𝑇ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑢𝑢𝑏𝑏 × 𝑅𝑅𝑅𝑅) 

𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 = 𝑀𝑀𝑀𝑀𝑀𝑀(∑𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑢𝑢𝑢𝑢𝑟𝑟𝑡𝑡,𝑁𝑁𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟,𝑏𝑏𝑢𝑢𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑢𝑢𝑏𝑏) 
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Where: 
𝑁𝑁𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟: total number of rooms excluding kitchen 
𝑊𝑊𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟: radiator unit weight 
𝑁𝑁𝑘𝑘𝑟𝑟𝑡𝑡𝑘𝑘ℎ𝑎𝑎𝑢𝑢: total number of kitchens 
𝐴𝐴𝑢𝑢𝑢𝑢𝑟𝑟𝑡𝑡: area of the living space of apartment 
𝑅𝑅𝑅𝑅: radiator capacity in kW 
𝛼𝛼: number of radiators per room 
𝐻𝐻𝐻𝐻𝑅𝑅: heat loss coefficient in W/m^2  
𝑄𝑄ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑢𝑢𝑏𝑏,𝑏𝑏𝑢𝑢𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑢𝑢𝑏𝑏: heating demand of the building in kWh 
𝑇𝑇ℎ𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑢𝑢𝑏𝑏: heating period in hours 
This approach balances detail with practicality, aiming to closely reflect real-world 

scenarios. To improve the accuracy of the model, connection matrices for different 
radiator models and typical installation years can be incorporated into the model, 
thereby improving the ability to replicate the real world. The approach is also 
applicable to other building components, thereby improving robustness and 
generalizability. 

2.2. PREDICTIVE MODEL DEVELOPMENT 

For the development of the predictive model, it is necessary to create a comprehensive 
database that integrates various sources with key parameters to ensure flexibility and 
reliability for practical applications. Key databases used include: Gebäude- und 
Wohnungsregister (GWR), Gebäude- und Wohnungsstatistik (GWS), Der 
Gebäudeenergieausweis der Kantone (GEAK) and 3D Data of Swiss Topography 
(Swisstopo) (Die Schweiz in 3D, n.d.; Home / GEAK, n.d.; Swiss Geoportal, n.d.; 
Office, 2023). The databases cover a wide range of buildings, with available data 
spanning from about 0.13 to 5 million buildings, encompassing diverse aspects such as 
building geometry, energy sources, and registered information. 

2.2.1. Preparation of Data 

To manage the extensive data in this study, various sources are consolidated into a 
unified database by merging the databases on unique building identifier numbers 
(EGID), as demonstrated in Figure 2. From the parametric model development section 
above, essential parameters are identified to estimate equipment quantities and 
materials. The data is refined and standardized for predictive model development, and 
harmonized by excluding non-essential details, like the recording year, to focus on 
relevant features. Included parameters cover aspects such as building geometries, 
number of floors, residents, apartments, and details about construction, demolition, 
renovation, building categories, and heating systems.  

The data is converted back to the original format from a specialized coding system. 
In addition, the complexity of the building systems and building categories makes it 
necessary to summarize the various types of heating systems and buildings by "map" 
function. The simplified categories allow the study to focus on residential and office 
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buildings, consistent with the primary interest of the study. 

Figure 2. Data Preparation Workflow Diagram  

2.2.2. Filling Data Gap 

The main challenge in analysing building data lies in the large discrepancies and gaps 
in existing databases. Switzerland lacks comprehensive data on all buildings, with the 
GEAK database covering less than 5% of buildings. Even in the more inclusive GWR 
and GWS databases, data inconsistencies and gaps are evident, which hinders the 
construction of PPM and the estimation of equipment and material quantities. 

Figure 3. Workflow Diagram for Predictive Model Development and Database Enrichment 

To address these gaps, especially for predicting material quantities necessary for 
further analysis, ML-based predictors are utilized instead of archetype-based 
clustering. This ML approach allows for the creation of detailed BSM at the building 
level and is adaptable for exploring specific categories or entire building ranges, thus 
bridging data gaps, and enhancing predictions for sustainable practices. As shown in 
Figure 3, building data is categorized into two types for prediction: categorical and non-
categorical, each processed using appropriate predictors.  

Figure 4. Neural Network Architecture for Predictor of Classification Problem 

The data preprocessing step is detailed as follows. Rows with missing values are 
first removed to maintain the integrity of the dataset. The data is then split into features 
and target variables. Feature selection is performed using a cross-correlation matrix to 
identify the top three correlation parameters as key features. These features are then 
validated by expert knowledge to ensure logical predictions. 

Regression methods are suited for continuous or numeric data like unique values 
per household, including building geometrical and occupancy details. For these non-
categorical data, XGBoost regression is employed for data imputation. An XGBoost 
regression model customized with specific hyperparameters is used to predict and fill 
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in missing values. The validity of the model is measured by the R-squared metric, 
which assesses how well the model explains the variance of the target variable. 

In contrast, neural networks (NN) are highly effective in classification tasks with 
limited choices, such as categorizing building types and heating systems, due to their 
proficiency in handling predefined categories. To leverage this strength, a deep 
feedforward neural network is constructed using the PyTorch framework, specifically 
tailored for categorized data. The network is composed of several fully connected 
layers. Each layer incorporates batch normalization and the ReLU activation function 
for enhanced performance. The architecture's core features 8 hidden layers and dropout 
regularization is applied to prevent overfitting. Regarding the network's parameters, the 
batch size is set to 12,800 across 100 epochs. The output feature number of the last 
layer is set based on the unique category count in the target column. For the 
optimization process, the Adam algorithm is employed with a learning rate of 1e-3. 
Additionally, the ReduceLROnPlateau scheduler is utilized for optimizing learning 
rate adjustments.  

3. Results 

3.1. PREDICTIVE MODEL AND ENRICHED DATABSE 

The enrichment score indicates the percentage of newly filled data fields in the 
database, which initially had over 40% missing values, especially in non-categorical 
data, due to sparse Swiss building coverage in the GEAK database from null values 
and limited size. Post predictive model application, database completeness 
significantly improved, potentially enriching data up to 95%, especially in previously 
underrepresented areas. 

Figure 5. Enrichment Score of the Predictive Model for Non-Categorical Datasets 

3.2. PARAMETRIC MODEL 

Parametric model is designed to estimate the availability of the building components 
based on key parameters. Connection matrices are included for addressing equipment 
availability and variability by year, building categories etc. 

3.2.1. Connectivity Matrix 

Central to this model is the connectivity matrix, which enriches the database by 
including assumptions on inter-relationships of energy sources, building categories, 
and construction periods. For instance, regarding the relationship between building 
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systems and building categories, the prevalence of Swiss residential buildings typically 
has no HVAC systems. To facilitate understanding, buildings categories are simplified 
into residential, office, and others, integrating binary availability assumptions from 
expert knowledge, as sampled in Table 1. Same approach is also applied to analyse 
relationships of equipment and energy sources, equipment (material) and installation 
years. This integration enhances the model with detailed layers and predicts the 
quantities of available equipment and related material amounts, offering flexibility for 
additional matrices as required. 

Table 1. Sample Connectivity Matrix for Building Systems Across Different Categories 

Building Systems Component 
Building Category 

Residential Office Other 

Heating Radiator 1 1 0 

HVAC Air Duct 0 1 0 

Plumbing Water Pipe 1 1 1 

Electrical Electrical Cable 1 1 1 

3.3. UNCERTAINTY QUANTIFICATION 

3.3.1. Parametric Model 

Figure 6. Evaluation of the Parametric Model for Radiator Quantity Estimation. (a) Sensitivity 
Analysis. (b) Probabilistic Distribution of Model Results. 

To calculate radiator quantity with a parametric model, basic data like living area and 
room count are used, but certain values are based on assumptions, introducing 
uncertainty. A three-stage sensitivity analysis is conducted to mitigate this. Firstly, 
assumption-based parameters are refined through iterative analysis, reducing reliance 
on assumptions. Secondly, parameter ranges reflecting real-life scenarios are chosen, 
with radiator unit weight being a key factor (Figure 6(a)). Lastly, uncertainties are 
quantified using Monte Carlo simulation within the SciPy package(Virtanen et al., 
2020), resulting in a 20% relative standard deviation. This comprehensive approach 
enhances the model's reliability by critically evaluating and narrowing down essential 
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parameters and their ranges.  

3.3.2. Performance of Predictor 

The performance of the predictors, including both regression and neural network 
models, is evaluated as shown in Figure 7. The regression model's accuracy is 
determined using the R-squared (R²) score, which measures the variability of model. 
The R² score for cooking equipment is 0.912 which indicates 9% variance.  

Figure 7. Performance of Predictors. (a) Scatter Plot: Actual vs. Predicted Values for the Regression 
Model on Cooking Facilities. (b) Evolution of Accuracy for the NN Model on Heat Generator. 

For the NN-based classification model, predictor performance is assessed based on the 
accuracy achieved after all training epochs are completed. The accuracy of the 
predictor, as shown in Figure 7(b), can reach nearly 90% for determining the heat 
generator used in each building, crucial for understanding the availability of related 
heating equipment on a building-by-building basis. 

4. Discussion 

To accurately estimate resources, the probability of different processing streams and 
equipment lifetimes must be considered. Model validation involving additional data 
and expert knowledge is also critical. Through cross-validation and real-world data, 
model parameters can be adjusted, creating a feedback loop for continuous 
improvement. 

However, the effectiveness of the method depends on the quality of the database 
used. The comprehensive database includes diverse characteristics of the building 
stock across different regions and time periods, and how the variation may affect the 
predictive accuracy of the model further investigated. Switzerland is unique in that it 
has very detailed public resources, including extensive federal register information and 
detailed data on building performance and energy systems. While this level of detail 
may not be replicable in other countries, the robustness of the PPM has been proven. 
Even with minimal requirements, the model improves the completeness of data 
characterization with a high degree of accuracy. In addition, PPM is adaptable to a wide 
range of situations and can be customized based on local expert knowledge and region-
specific building system design rules. For example, in Singapore, where HVAC 
systems are prevalent, PPM can be adapted to focus on the components associated with 
these systems.  
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5. Conclusion 

Current BSM approaches, primarily archetype-based, often lack detailed information 
on individual buildings, limiting their utility in assessing reusable materials on a local 
scale. This gap affects the development of decentralized markets for the circular 
economy. BSM has traditionally focused on structural materials and building skins, 
which are challenging to reuse due to labour intensity and limited environmental 
savings potential. However, building system materials, mainly metals, offer a longer 
service life and high reuse potential, yet their environmental impact and reuse potential 
are often overlooked. 

This study highlights the importance of data-rich integrated databases in developing 
parametric models for the building sector. By combining various data sources and 
applying machine learning tools, a data-driven predictive model is developed, capable 
of accurately predicting building systems and materials embedded in the current 
building stock. While our focus is on leveraging these robust models for filling the 
missing values, other variants may exhibit comparable performance, which opens 
avenues for future research. 

Despite inherent data gaps and uncertainties, this research lays the groundwork for 
data-driven decision-making in construction. Efforts are made to reduce uncertainty, 
such as minimizing assumption-based parameters and enhancing accuracy through 
machine learning predictions. Future potential lies in refining these models with real 
project data, offering flexibility to extend to various building components and aligning 
with design principles. In summary, this research contributes significantly to the 
construction industry's sustainability by enabling informed decisions in reuse, 
recycling, and renovation, thus promoting resource efficiency and sustainable building 
practices. 
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