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Abstract. Modular structures with repeating configurations are a 
common type of building that consists of identical unit components 
arranged in a specific way. Design reasoning for such structures is an 
unstructured and unique process that relies on the designer's intuition 
and rational reasoning. However, repetitive design movements often 
become time-consuming and energy-draining. In the era of artificial 
intelligence, a crucial question is whether machines can replicate the 
design reasoning behaviours of human designers. This research aims to 
integrate the strength of human unique capabilities, like creativity, 
intuition, and design skills, with machine-emulating creativity, applied 
in the modular structure design while addressing production efficiency. 
It has shown that the Agent can mimic the designer's stacking approach 
to modular structure design by utilising Generative Adversarial 
Imitation Learning (GAIL) and Proximal Policy Optimization (PPO). 
Such a co-intelligent design method facilitates the creation of diverse 
modular structures. 

Keywords.  Design Reasoning, Co-intelligent Design, Modular 
Structures, Generative Adversarial Imitation Learning. 

1. Introduction 

1.1. MODULAR STRUCTURES WITH REPEATING CONFIGURATIONS 

Modular structures, such as temporary buildings, art exhibits, and urban furniture, are 
widely used in the architectural field (Arup Associates, 2016; Ruiz et al., 2018; Taylor, 
2015). It consists of unit components that possess identical or similar forms. A certain 
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number of unit components can generate various patterns through differentiated 
arrangements. Such constructions enable flexible adjusting to fit multiple site 
constraints by increasing or decreasing the number of unit components or changing 
their placement. 

In various case studies investigating modular architectural design at different scales, 
we have observed that the heart of this series of studies lies in arranging modular 
components to create a solution that aligns with the designer's intention.  

Throughout such processes, designers focus on the form of the components and 
their placements to achieve their design goals and accommodate specific spatial 
constraints(Düzenli et al., 2017; Kim et al., 2019), which is a typical process of 
reasoning about the structure itself (Akin, 1993). The designer's thinking and behaviour 
continuously influence the reasoning process until a modular construction is created. 

1.2. DESIGN REASONING FOR MODULAR FORM 
Like all architectural design processes, freehand sketches (Suwa & Tversky, 1997) and 
manipulation of objects in 3D modelling software are the primary ways of reasoning 
about modular structures. Such a visual reasoning process continues translating the 
designer's internal design cognition and intentions into external representations, such 
as sketches and 3D models (Oxman, 2001; Park et al., 2006).  

However, it has been observed that designers often spend a lot of time and effort 
on repetitive movements during the design reasoning process (Chiu, 2003). For 
example, they may have to move unit components around repeatedly to reorganise their 
placement relationships. Although the development of digital drawing and modelling 
tools has significantly enhanced design productivity and creativity over the past 
century, designers still cannot avoid implementing such inefficient design movements. 

Can machines collaborate with designers in the artificial intelligence (AI) era to 
enable design reasoning? Like any other art and design activity, modular structure 
design is a unique, non-linear process closely related to the designer's logical reasoning 
methods and intuition (Goldschmidt & Weil, 1998). The emphasis is that the intuitive 
process, stemming from individual experiences and ways of thinking that are difficult 
to capture and verbalise, is considered a unique capability of human designers (Raami, 
2015). Therefore, a crucial question is whether machines can imitate the design 
reasoning behaviours of human designers.  

Machine Learning is a subfield of Artificial Intelligence that has emerged in the 
domains of art and design, serving as a versatile tool, medium, and platform for 
designers (Ye, 2021). Our research utilises generative adversarial imitation learning 
(GAIL) (Ho & Ermon, 2016) to develop cognitive computing processes, Agent, that 
imitate the design reasoning behaviours of human designers. This process enables the 
generation of modular structures through a in co-intelligent design method that 
combines the unique capabilities of human designers with the computational strengths 
of machines. The efficient collaboration enables the creation of diverse modular 
structures. 
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2. Methodology 

2.1. CO-INTELLIGENT DESIGN REASONING 
To start, we introduce two concepts - Agent and Masterbuilder. Agent refers to 
computer programs, while Masterbuilder refers to human designers. Utilising the 
GAIL, the Agent can undergo self-training to acquire a policy model learned from the 
Masterbuilder's design reasoning trajectory while generating the modular spatial 
scenario based on an incremental growth sequence as a design outcome of imitation 
learning. 

As a model-free imitation learning algorithm, the GAIL, first proposed by Jonathan 
Ho and Stefano Ermon, consists of Inverse Reinforcement Learning (IRL) and 
Generative Adversarial Network (GAN). Such a system involves a policy network and 
a discriminator network. IRL resolves the limitations of Reinforcement Learning, thus 
improving learning efficiency and generalization. 

The Masterbuilder's reasoning trajectory describes the correspondence between the 
environment state (S) and the design action (A). The design policy π denotes the set of 
all stationary stochastic policies that take actions in A given states in S. The occupancy 
measure ρ!" (s, a) describes the data distribution of state-action pairs in the design 
reasoning trajectory. Subsequently, utilising the ML-Agents (Unity Technologies, 
2020) connected to the PyTorch (Meta AI, 2016) environment (neural network 
training), The designer sets up the initial environment in Unity (Unity Technologies, 
2005), and the Agent randomly initialises the policy network to interact with the 
environment and generate an inference trajectory under the current policy. 

Figure 1. Create the Agent's cognitive process utilising the GAIL and PPO 

Afterwards, as shown in Figure 1 above, the Masterbuilder's reasoning trajectories 
dataset trains the discriminator to distinguish the Agent design policy (𝑠#, 𝑎#, 𝑠#$%) ∼ 
𝐷&! and the human designer's (𝑠#, 𝑎#, 𝑠#$%) ∼𝐷'! . D (s, a) denotes the probability 
that the discriminator categorises the state-action pairs into expert-like regions. After 
defining a reward function based on the discriminator's prediction D (s, a), the Proximal 
Policy Optimization Algorithms (PPO) (Schulman, 2017) trains the policy network to 
maximise the reward by deceiving the discriminator. To maximise the reward Rn, the 

173



M.L.SUN ET AL. 

occupancy measure of the Agent's trajectory generated by the policy network tend to 
be similar to the Masterbuilder's trajectory - increasing the probability of classification 
as a Masterbuilder. Ultimately, when the discriminator cannot distinguish between the 
Agent's trajectory and the sample of the Masterbuilder's reasoning trajectory, it 
indicates that the Agent has learnt a similar reasoning strategy from the Masterbuilder's 
reasoning demonstration. As a result, the Agent can generate a modular spatial scenario 
based on an incremental growth sequence that meets the designer's intention while 
learning the policy.  

2.2. CO-INTELLIGENT DESIGN METHOD 
The proposed co-intelligent design methodology for modular structures consists of 
design, digital fabrication, and assembly processes, as shown in Figure 2. 

Figure 2. Co-intelligent design method towards modular structures 

(1) Generation of modular spatial model based on incremental growth 
The computational framework was established based on the Unity platform and 

ML-Agents tool, enabling designers to train AI utilising the Pytorch in the virtual 
environment controlled by the Anaconda tool. In Unity, interactive scripts are written 
to create a co-intelligent design system, including the Agent, Masterbuilder, and 
Configurator classes. In Unity, the Agent learns and imitates the human designer's 
design strategy while generating a modular spatial scenario in a sequence. After pre-
training the policy model using the behavioural cloning approach before the GAIL 
implementation itself (the agent imitates precisely the provided demonstration by the 
Masterbuilder first and trains it during the first 1 million iterations out of 5 million), we 
observe and evaluate the GAIL process and training results through the visual charts 
on the TensorBoard (TensorFlow, 2015) to select the most satisfactory learning scene 
setup for the modular scenario generation sequentially.  
(2) Form-finding of modular structures 

The modular sequence spatial design generated in Unity is imported into the 
parametric modelling software such as Rhino and Grasshopper through FBX format. 
In parallel, Designers can customise the unit components based on unique design 
concepts in 3D modelling software. These units will then be inserted into each specific-
sized cube of the modular template in Grasshopper, resulting in a 3D model of modular 
structures with repeating configurations. 
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(3) Digital fabrication and assembly 
To provide a complete picture of the morphogenetic potential of the co-intelligent 

design method, we introduce the fabrication and assembly of physical models. 
Designers can choose from various digital fabrication methods, such as laser cutting 
and 3D printing, to produce and assemble modules that meet their specific 
requirements. Ultimately, modular structures are designed and produced efficiently. 

3. Experiment 

3.1. DESIGN SCENARIO BASED ON INCREMENTAL GROWTH 

Based on the Unity platform and the ML-Agents tool, a computational system was 
built to enable designers to train the Agent using Pytorch in a virtual environment 
controlled by the Anaconda tool. Such a system consists of three classes of scripts, 
including the Masterbuilder, Agent, and Configuration classes. These create the logic 
and principles of the interaction process between the designer and the environment to 
generate a modular design scenario.  

Figure 3. The policy to generate the modular spatial design scenario 

First, two types of concepts during the interactive process are defined to articulate 
the interactive norms and underlying generation logic of the modular design scenario, 
as shown in Figure 3. Prefab refers to the entire cluster of building blocks, while 
activePrefab refers to the newly generated block in a growth sequence. In the Unity 
interface, we set two 1*1.5*1m blocks labelled Prefab as the initial building blocks. 
Meanwhile, a 1*1.5*1m block is randomly generated and tagged as the Agent at an 
arbitrary position away from Prefab—the script manipulates such a process. When the 
Agent collides with the initial building block (Prefab), a new set of building blocks will 
be added at that location according to the vector direction and the number of added 
blocks the designer defined in the script. The newly generated cluster is labelled as 
activePrefab. The entire set of building components is now referred to as Prefab. The 
Prefab and activePrefab clusters' state continuously changes as the Agent interacts with 
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the environment. Eventually, the Prefab cluster generated is the modular spatial design 
scenario obtained. 

The designer allows the use of a stacking method to design. The Environment 
Configuration Class and the Master Builder Class scripts enable the designer to move 
the Agent using the QWEASD keyboard keys and make it collide with the Prefab 
during the demonstration definition by the Masterbuilder before the training starts. It 
helps the designer control the growth location and level according to their design intent. 
Once the designer completes modular design through this interactive process, the 
Agent's trajectory contains a dataset of its movements and the state of the environment. 
This data will be used as a demonstration for the Agent default self-training. 

The algorithmic system uses the Environment Configuration Class and Agent 
scripts to identify the values of the environment state. After undergoing the GAIL 
process, the policy network receives the state values and outputs action values, 
including direction and distance, as shown in Figure 3. These action values guide the 
Agent to move, and the collision Prefab generates new building blocks. In parallel, the 
designer creates a reward function representing the norms for different actions and 
states. The reward function's conditions are evaluated at three levels:  

(a) Verify that activePrefab is generated in numbers that exceed the designer's 
specified threshold.  

(b) Evaluating the distance between the Agent and the Prefabs.  
(c) Verifying that the Prefabs do not cross the boundaries the designer defines. 
Based on these criteria, the Agent mimics the design reasoning trajectories of the 

human designer and optimises the strategies in these actions to obtain the highest 
possible reward. After analysing the function graphs on TensorBoard, as illustrated in 
Figure 4, we discovered that the Agent learned strategies similar to the designer's. 
Meanwhile, a co-intelligent design process creates a modular spatial design scenario in  
an incremental growth sequence. 

Figure 4. The evaluation of the training process on TensorBoard 

3.2. FORM-FINDING OF MODULAR STRUCTURES 
Firstly, we started with the module design in the 3D modelling software Rhino. After 
that, through the physical prototype testing, we composed the modules into modular 
units, which can be repeated in the modular design scenario in a growing sequence to 
enrich the internal structure. Then, in Grasshopper, the unit is populated in the Unity-
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generated modular scenarios through a parameterised approach and generates a 3D 
model of the modular structure. 

Figure 5. Form-finding of modular structures 

We use a crisscross form with slots in two positions as the primary graphic of the 
module in the 3D modelling software, as shown in Figure 5. The slots are 10*3.6mm 
in size and have a width equal to the sheet thickness, ensuring a sturdy snap joint. We 
used laser-cut wooden boards to create these modules during the physical prototyping 
phase. We assembled them into model units that could be flexibly replicated in modular 
design in growing sequences. Considering the relationships between slots when 
designing modules and modular units is essential to avoid loose connections or 
collisions when populating the module sequence in the next stage. Eventually, we 
selected a modular unit that consisted of 18 module pieces and created a 3D model for 
the unit. 

In the next step, we import a modular sequence model (the spatial template 
generated in Unity) in FBX format from Unity into Grasshopper. Then, we match the 
modular units into the sequence framework. Each block in the modular sequence is 
used as a bounding box, set to populate the correctly oriented modular unit. Therefore, 
we must ensure that the modular unit's boundary corresponds to each block boundary 
in scale and size. To achieve this, we extract the geometric centres of each block in all 
modular sequences along with the modular unit's geometric centres and orientation 
vectors. We can position and rotate the unit to ensure its centres align with the blocks. 
It allows us to generate the modular structure in an integrated way. 

3.3. DIGITAL FABRICATION AND ASSEMBLY 
Physical models were assembled to showcase the form-creating potential of co-
intelligent design. Using the OpenNest plugin in Grasshopper (Vestartas, 2018), we 
flattened the modules of the entire structure onto a single board to optimise cutting 
materials. The designer utilised the laser cutting technique to fabricate modules using 
4mm wooden panels. Then, based on the created 3D modular structure, we quickly 
assembled a physical prototype, as shown in Figure 6. 
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Figure 6. Modular structures 

4. Discussion 

4.1. ADVANTAGES 

This study explores the potential benefits of combining human and machine 
participation in design reasoning, replacing focusing solely on competition. With the 
development and application of algorithms, the traditional design approach, which 
human designers have dominated, will undergo new impacts and changes. Our study 
proposes a methodology that leverages the ML-agent tool on Unity and PyTorch to 
develop an Agent's cognition, enabling it to imitate the designer's reasoning process. 
This methodology allows the Agent to access the human designer's reasoning strategy, 
even surpassing based on parameter settings. 

Co-intelligent design reasoning combines human thought processes with 
algorithms to enhance the design process. The design process is often unstructured, 
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which makes it challenging to identify a clear logic or strategy. We utilised the model-
free imitation learning method GAIL employing the PPO algorithm to enable the agent 
to learn and adopt expert strategies. In this collaborative process, designers can express 
their design intentions in creative design tasks. In parallel, the agent can perform 
repetitive and time-consuming design movements instead of human designers. 

The co-intelligent design process also enables the creation of forms that closely 
align with the designer's intentions. No matter the modular sequences generated by the 
Agent itself or the Agent interacting with the human designer, both demonstrate the 
method's potential for autonomous co-intelligent creation. 

4.2. LIMITATIONS 
We confirmed that the design methodology allows the Agent to access the human 
designer's reasoning strategies for arranging modular structures. However, further 
empirical research is required to understand the human thought process in modular 
design in depth. With this knowledge, cognitive computing techniques can facilitate a 
more comprehensive and cooperative design process between humans and machines. 

We must continually enhance the scientific and quantitative evaluation of the co-
intelligent design process and its outcomes to develop this approach in further research 
for more complex spatial design scenarios. This will enable the collaborative creative 
process by human designers and machines through computational methods to deliver 
a novel design to production space. 

5. Conclusion 
Our research focuses on the design reasoning process of modular structures. Based on 
general observations and the test experiment, designers' design reasoning is a non-
structured and unique process with no apparent and intuitive patterns. Therefore, this 
study draws on the algorithmic process of model-free imitation learning, GAIL, which 
enables the Agent to summarise and learn the underlying design strategies from a 
human designer reasoning process and simultaneously generates the modular spatial 
design scenario. During the Agent's self-training process, the designer can observe the 
function graphs generated in TensorBoard to determine whether the Agent has learned 
the design strategies. It helps to ensure that the design reasoning process is well-
collaborated. We use an integrated software platform to populate modular units into 
the spatial design scenario, creating modular structures with intricate internal design 
qualities. These modules are then fabricated using laser cutting and manually 
assembled efficiently. Our research enables the efficient collaborative design process 
between humans and machines to generate pattern-rich modular structures. 

Our research examines collaborative design reasoning in the age of AI rather than 
a man/machine dichotomy. This co-intelligence design approach allows human 
designers' unique capabilities and machines' computational strengths to be more 
naturally combined to solve design problems jointly. Conducting detailed scientific and 
empirical research on human designers' cognitive and reasoning processes is essential 
for further research. It will help us achieve a more profound co-design process and 
enhance this approach's scientific validity and applicability. 
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