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Abstract. Against the backdrop of energy crises and climate change, 
performance-oriented architectural design is increasingly gaining 
attention. Early-stage assessment of natural ventilation performance is 
crucial for optimizing designs to enhance indoor environmental comfort 
and reduce building energy consumption. However, traditional 
numerical simulations are time-consuming, and existing data-driven 
surrogate models primarily focus on predicting partial indicators in 
indoor airflow or single-space airflow. Predicting the spatial 
distribution of airflow is more advantageous for addressing global 
issues in building layout design. This paper introduces a surrogate 
model based on Generative Adversarial Networks. We constructed a 
dataset of floor plans, with 80% of the data generated using 
parameterized methods and 20% sourced from real-world examples. 
We developed a 3D encoding method for the floor plans to facilitate 
machine understanding of spatial depth and structure. Finally, we 
conducted airflow simulations on the dataset, with the simulated results 
used to train the Pix2pix model. The results demonstrate that the 
Pix2pix model can predict indoor airflow distribution with high 
accuracy, requiring only 0.8 seconds.  In the test set, the average values 
for MAPE, SSIM, and R² are 2.6113%, 0.9798, and 0.9114, 
respectively. Our research can improve architectural design, enhance 
energy efficiency, and enhance residents' comfort, thereby contributing 
to the creation of healthier indoor environments. 
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1. Introduction 
Due to the increasingly severe pollution and climate change, the challenges faced by 
urban and indoor environments in providing good air quality and thermal comfort are 
becoming more pressing. As people spend a significant portion of their lives indoors, 
the indoor air circulation environment directly affects daily life, particularly in terms of 
health, comfort, and productivity. Therefore, creating a healthy and comfortable indoor 
environment, especially in residential settings, is of paramount importance. 

To enhance the thermal comfort of residents, a substantial amount of energy is used 
for the air conditioning systems of residential buildings. However, adopting passive 
design methods such as natural ventilation can regulate indoor air quality and comfort, 
while also reducing the energy consumption of air conditioning equipment (Yik and 
Lun, 2010), thereby promoting sustainable development. During the early design 
stages, buildings have greater potential for performance optimization, emphasizing the 
need to predict and assess indoor airflow during these phases (Wen and Hiyama, 2018). 

2. Related Work 
Scholars both domestically and abroad have conducted extensive research on 
simulating wind environments. Over the years, Computational Fluid Dynamics (CFD) 
has been widely and consistently applied to simulate airflow in building environments. 
However, the parameter inputs of traditional CFD simulation software are complex, 
and simulations require a considerable amount of time, resulting in low simulation 
efficiency. This significantly limits the development of performance-based design in 
architecture. 

With the continuous progress of machine learning, data-driven surrogate models 
have been able to significantly improve prediction speed while maintaining predictive 
accuracy (Nguyen Van and De Troyer, 2018) (Meddage et al., 2022). As the volume 
of data increases, artificial neural networks (ANN) have become a research focus due 
to their high prediction accuracy and low computational costs. Studies have utilized 
neural network models as surrogate models to predict low-dimensional distributions of 
pollutant concentrations (Cao and Ren, 2018), forecast indoor airflow patterns and 
temperature distributions (Zhou et al., 2021). Furthermore, research has employed 
ANN for rapid energy consumption prediction in early-stage complex architectural 
form design (Li et al., 2019), optimizing residential building HVAC systems through 
ANN-based model predictive control (Afram et al., 2017), and improving indoor 
airflow prediction accuracy by sequentially connecting two independent ANN models, 
avoiding the need for large training datasets (Kim et al., 2023). 

However, current predictions of indoor airflow data mostly focus on key 
coefficients such as average wind speed, wind pressure coefficients, and air age. The 
use of indoor space is characterized by non-uniformity, meaning that people tend to 
stay in specific areas with higher requirements for environmental quality. Therefore, 
predicting detailed global airflow within the entire space is crucial for addressing local 
issues in indoor design, such as spatial distribution, optimization of door and window 
shapes, sizes, and layouts, ensuring comfort and environmental quality indoors. 

The emergence of Generative Adversarial Networks (GANs) has propelled the 
rapid development of image prediction and has been continuously applied in the field 
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of predicting architectural environmental performance. Some studies have used 
pix2pix to learn wind distributions around buildings (Mokhtar et al., 2020) and predict 
wind pressure images (Hu et al., 2020). Additionally, pix2pix models have been used 
to real-time predict outdoor wind environments, comfort, and solar radiation, 
accelerating performance-driven urban design (Huang et al., 2022). Furthermore, 
combining pix2pix-based outdoor wind field and solar radiation prediction models 
with urban design and optimization systems has been explored (Duering et al., 2020). 
Apart from urban environments, GAN models have also been applied to indoor 
environmental predictions, such as using CNN and GAN as surrogate models for 
planar sunlight simulation, predicting static, annual sunlight metrics, and spatial 
illuminance distributions (He et al., 2021). Additionally, for indoor airflow 
environment predictions, a new boundary condition CGAN model has been created, 
generating two-dimensional airflow distribution images based on continuous input 
parameters (Faulkner et al., 2023). 

Based on the above research, GANs have high application value and potential in 
predicting indoor airflow fields. However, current research on the prediction of global 
indoor airflow mostly relies on fixed boundary spaces or single spaces, leaving certain 
gaps in predicting the global wind environment in diverse indoor spaces. 

3. Methods 
This paper proposes a rapid prediction method for indoor natural ventilation based on 
a CGAN model. Initially, the model constructs samples based on parameterized 
generative models and real residential models. Subsequently, these samples are 
imported into the Butterfly plugin for batch simulation of indoor airflow environments. 
Next, a dimensionality reduction and encoding process is applied to the three-
dimensional models. The model encoding results, combined with simulation results, 
constitute the training dataset for the Pix2pix model. Finally, the Pix2pix model is 
utilized to construct a predictive model for indoor environmental performance. The 
technical path of the study is illustrated in Figure 1. 

Figure 1. Workflow 

3.1. DATA COLLECTION 
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This study established two distinct datasets, with 80% derived from generative 
parametric modelling and 20% based on actual residential floor plans. These datasets 
were employed for model training, and the results were subsequently compared. 

3.1.1. Parametrically Generated Residences 
The generative residential model is based on Grasshopper shape grammar, utilizing the 
residential outline boundaries, the edges of exterior walls, and the entrance door 
position as inputs to generate residential floor plans parametrically (PlanFinder, 2023). 
Secondary morphological control indicators, including floor height, door width and 
height, window sill height, and window width and height, were established based on 
relevant research to generate three-dimensional models. The logic of model generation 
is illustrated in Figure 2. To comply with residential architectural design standards and 
energy efficiency specifications, constraints were added, such as the window-to-wall 
ratio (WWR). The parameter values are provided in Table 1. The collected generative 
residential dataset comprises a total of 319 samples. 

Figure 2. Parametrically generated residences 

3.1.2. Real Residential Dataset 

In order to increase the rationality of the floorplan of the training samples, a real data 
set is added, which is derived from real residential floor plans. Three-dimensional 
models were constructed using Grasshopper, with consistent values set for window sill 
height (0.9m) and window height (1.5m). To expand the dataset and mitigate 
overfitting, cases were transformed into new floor plans for data augmentation. By 
changing the window width to enhance real residential dataset, the window width was 
reduced to 80% and 70% of the original, respectively. The actual dataset comprised a 
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total of 84 samples.  

Table 1： Values for Residential Floor Height, Door Width and Height, Window Sill Height, 
Window Width, and Window Height Parameters 

3.2. IMAGE ENCODING 

The input for pix2pix is defined as a three-dimensional tensor of size 256*256*3, thus 
requiring the encoding of geometric data from the residential models into a three-
dimensional tensor of the same size, as illustrated in Figure 3(a).  

Figure 3. Model encoding method  

Parameters Values (Range) 
Floor Height 3.0m 
Door Width 0.9m 
Door Height 2.0m 
Window Sill Height 0.8m~1.2m 
Window Width 0.5m~2m 
Window Height 0.9m~1.8m 
WWR Northward ≤ 0.25; East-west ≤ 0.30; 

Southward ≤ 0.35. 
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Considering the significant impact of room walls and openings on indoor wind 
speed, the distance from the indoor space to the walls is considered in the image 
encoding. To maximize the geometric information contained in the encoding, the 
following encoding design was carried out: stacking planar geometric information, 
height information, and the distance from the space to the walls in the depth direction. 
The information covered by the first layer includes planar geometry information, height 
from the ground to the lower edge of door openings, height from the ground to the 
lower edge of window openings, and floor height. The second layer contains 
information on the height from the ground to the upper edge of door openings and 
window openings. The third layer provides information on the distance from the 
interior space to solid walls. A monitoring surface of 20m*20m is set at height of 1.5m 
above the ground, divided into 256*256 evenly distributed monitoring points. The 
Manhattan distance from the monitoring points inside the room to the nearest wall is 
calculated. As shown in Figure 3(b), this encoding method clearly displays the planar 
geometry and height information of the residential walls and doors/windows, 
indicating the impact of room shape, door/window opening positions, and sizes on the 
indoor airflow field. 

3.3. INDOOR AIRFLOW SIMULATION 
Butterfly is an interactive interface based on the OpenFOAM CFD Code, an open-
source CFD library written in C++ and run in a Linux environment. It is used to visually 
invoke OpenFOAM commands. The parameter settings during the CFD simulation 
process in this study, including the configuration of the computational domain, 
boundary conditions, and mesh size, follow existing guidelines and best practices 
(Tominaga et al.,2008). The boundaries of the computational domain are set in the 
inflow and outflow directions, with the sides and top positioned 1.2H away from the 
wind tunnel boundaries, where H represents the maximum building height. The south-
facing side is designated as the inflow direction, while the north-facing side is set as 
the outflow direction. Inlet boundary conditions are defined as velocity inlet 
boundaries, with a wind speed of 1.8 m/s. All surfaces are defined as no-slip walls. 
Subsequently, a hexahedral unstructured mesh is generated with grid counts of 200, 
200, and 50 in the x, y, and z directions, respectively. A monitoring surface is set at a 
height of 1.5m above the ground, with 65,536 uniformly distributed monitoring points 
on a 20m*20m monitoring plane. 

The simulation is based on the three-dimensional steady Reynolds-averaged 
Navier-Stokes (RANS) equations, utilizing the standard k-ε turbulence model. The 
stopping criterion is set as residuals less than 10-3. Finally, the accuracy of the GAN 
airflow prediction model is validated by comparison with a wind tunnel database. 
Sensitivity tests, including the evaluation of model parameters such as color schemes, 
are conducted to assess potential influences on the model. 

3.4. PIX2PIX TRAINING 
In this study, a surrogate model based on pix2pix is established to predict the indoor 
airflow. The Pix2pix algorithm consists of two components: a generator and a 
discriminator. The generator adopts a U-net architecture, comprising an encoder and a 
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decoder. Each block in the encoder is composed of convolution-batch normalization-
Leaky ReLU, while each block in the decoder is comprised of transpose convolution-
batch normalization-dropout (applied to the first three blocks)-ReLU. Skip connections 
exist between the encoder and decoder. The discriminator employs PatchGAN to 
determine the "authenticity" of independent patches in an image. Each block in the 
discriminator is convolution-batch normalization-Leaky ReLU. The losses in Pix2pix 
include CGAN loss and L1 loss. L1 loss represents the mean absolute error between 
the generated image and the target image. 

The pix2pix network was trained using the TensorFlow deep learning framework, 
with architectural geometry-encoded plans as input and predicted wind field images as 
output. The dataset was partitioned, allocating 70% for training, 15% for validation, 
and 15% for testing. Considering the trade-off between image accuracy and 
computational cost, the iteration count was ultimately set at 200. The training process 
involved a total of 282 instances from the training set. Model training parameters 
adhered to the default settings of the Pix2pix algorithm. The experimental setup utilized 
an AMD R7 5800H, a 64-bit Windows 10 operating system, and an NVIDIA RTX 
3070 Ti. 

4. Result 
The generators and discriminators of the Pix2pix model converge after 200 epochs. To 
quantitatively assess the accuracy of the model's predictions, MAPE, SSIM, and R2 are 
selected as evaluation metrics. MAPE, the Mean Absolute Percentage Error, measures 
the average percentage error between predicted and actual values. A lower MAPE 
indicates better predictive performance. SSIM, the Structural Similarity Index, is a 
widely used objective image quality assessment metric based on the assumption of the 
highly adaptive structure information of the human visual system. SSIM values are 
generally not greater than 1, with a value of 1 indicating identical images. R2 is an 
indicator measuring the degree of fit of the model to the observed data, representing 
the ratio of the variance explained by the model to the total variance. 

The test set is input into the trained model, and MAPE, SSIM, and R2 are calculated. 
Figure 5 displays real images, predicted images, error images, and corresponding 
evaluation metrics for a subset of the test set. Visually, the predicted indoor airflow 
distribution in the model's output aligns well with the actual images. The average 
values of MAPE, SSIM, and R2 for all test results are 2.6113%, 0.9798, and 0.9114, 
respectively. The experimental results indicate a high degree of agreement between the 
model's predictions and the calculations from simulation software. Therefore, this 
model can provide intuitive feedback on indoor airflow distribution predictions for 
design professionals in the early stages of residential building design, assisting 
designers in performance-based design while ensuring accuracy.  
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Figure 5. partial results  

5. Discussion and conclusion 
Against the backdrop of climate change, the assessment of indoor environmental 
performance becomes increasingly crucial. This study focuses on the design of 
naturally ventilated residences, aiming to simplify and expedite the indoor airflow 
simulation process. The goal is to enhance the efficiency of early-stage energy-efficient 
and comfortable residential design, contributing to building energy savings, emissions 
reduction, and sustainable development. 

This research leverages GAN to achieve rapid prediction of indoor airflow under 
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natural ventilation conditions. The results indicate an average prediction time of 0.8 
seconds per sample, compared to 1200 seconds using traditional simulation software 
for the same samples. The model significantly reduces the time required for predictions 
compared to numerical simulations. The average MAPE, SSIM, and R2 for the test set 
are 2.6113%, 0.9798, and 0.9114, respectively. This predictive model meets the needs 
of designers to instantly visualize the natural ventilation performance of designs in the 
early stages of residential design. This model can provide rapid indoor airflow 
predictions for typical residential building forms without complex input parameters. 

However, the training samples in this study are limited, and it is possible to achieve 
predictions of indoor airflow in more diverse residential floor plans by increasing the 
volume of real residential dataset. Currently, the research is limited to residential 
building types, and the scope can be further expanded to include other types of 
buildings. In addition, this study uses fixed wind directions and speeds for training. In 
the future, more data can be simulated with multiple wind directions, and training can 
be conducted using wind speed ratios to enhance the generalizability to different 
regions and climates. 
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