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Abstract. In the rapidly evolving field of Generative AI, architects 
and designers increasingly rely on generative models for their 
workflows. While previous efforts focused on functional or building 
performance aspects, designers often prioritize novelty in architectural 
design, necessitating machines to evaluate abstract qualities. This 
article aims to enhance architectural style classification using CLIP, a 
Contrastive Language–Image Pre-training method. The proposed 
workflow involves fine-tuning the CLIP model on a dataset of over 1 
million architecture-specific image-text pairs. The dataset includes 
project descriptions and tags, aiming at capturing spatial quality. Fine-
tuned CLIP models outperform pre-trained ones in architecture-specific 
tasks, showcasing potential applications in training diffusion models, 
guiding generative models, and developing specialized search engines 
for architecture. Although the dataset awaits human designer review, 
this research offers a promising avenue for advancing generative tools 
in architectural design. 

Keywords.  Machine Learning, Generative Design, Contrastive 
Language-Image Pre-Training, Artificial Intelligence. 

1. Introduction 
With the fast development of Generative AI, generative tools are taking up an 
increasing share of day-to-day workflows of architects and designers. Usually, 
generative models use algorithms to evaluate the differences between generated 
outputs and desired ground truth, using this feedback to improve the generation quality. 
Many attempts have been made to assess architecture with algorithms, but most focus 
on functional or performance aspects, such as structural stabilities. For example,  Zheng 
et al. utilises an iterative machine learning algorithm to enhance the topological design 
exploration of compression-only shell structures, considering structural performance 
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and construction limitations (Zheng et al., 2020).  
However, designers often value spatial quality more than other aspects of 

generative tools in the context of architecture design. This leads to the demand for 
algorithms to assess more conceptual and abstract beyond pragmatic qualities in 
architectural design, such as spatial qualities. In the realm of architecture, a profound 
understanding of spatial quality is essential, directly shaping individuals' perception, 
experiences, and interactions. Space, extending beyond mere functional dimensions, 
acts as a canvas for emotions, culture, and social elements. Thoughtful spatial design 
guides individuals through movement, crafting unique genius loci Spatial cognition 
plays a central role in architectural design, influencing how individuals comprehend 
and interact with their surroundings. By exploring how people perceive and engage 
with space, AI-generated tools have the potential to produce outcomes that are both 
aesthetically meaningful and practical.  

2. Related Work 

2.1. RULE-BASED ASSESSMENT 
Previous work focused on CNN/DPM finesse to achieve the purpose (Xu et al., 2014).  

2.2. MACHINE LEARNING BASED ASSESSMENT 
As an alternative, several state-of-the-art generative models, such as Stable Diffusions, 
a Latent Diffusion model that generates images from text inputs, use CLIP, a 
Contrastive Language–Image Pre-training method proposed by OpenAI, as a text 
embedding to condition the generation (Radford et al., 2021). CLIP can evaluate the 
semantic similarity of given text and image pairs and perform classification tasks in a 
zero-shot manner. Zero-shot learning offers a promising avenue to broaden the scope 
of cognitive capabilities in the design process, transcending limitations tied to specific 
application-related problems (Larochelle et al., 2008).  

However, the original CLIP model performs poorly on architecture-specific 
classification tasks due to its dataset's lack of prior knowledge and source of truth, 
causing latent diffusion models trained with the default CLIP pipeline to underperform 
in generation tasks in the architecture domain. Improving the prior architectural 
knowledge in these pre-trained models is the key to enhancing the generation quality 
of latent diffusion models conditioned on these CLIP models. A specific model 
requires task-specific modifications and training from scratch for downstream tasks; 
fine-tuning would be a more effective way (Howard & Ruder, 2018). The finalization 
could be used to classify architectural components, conduct assessments throughout 
the process, and even directly influence design decisions. 

3. Methodology 
Therefore, we propose a workflow to compile architecture-specific data and leverage 
it for fine-tuning the CLIP model while preserving its zero-shot capabilities.  
CLIP is a multi-modal model based on contrastive learning. Unlike some contrastive 
learning methods in computer vision, CLIP's training data consists of text-image pairs, 
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where each pair consists of an image and its corresponding text description. The aim is 
for the model, through contrastive learning, to learn the matching relationship between 
these text-image pairs. CLIP comprises two models: Text Encoder and Image Encoder. 
The Text Encoder is utilized to extract text features and can employ the text transformer 
model commonly used in Natural Language Processing (NLP), while the Image 
Encoder is employed to extract image features and can use common Convolutional 
Neural Network (CNN) models or vision transformers.In this experiment, both the 
Text Encoder and Image Encoder used are vanilla models. A custom dataset was 
employed to train and fine-tune CLIP models using various prompt methods. Multiple 
checkpoints were fine-tuned using OpenCLIP (Cherti et al., 2023), an open-source 
implementation of the OpenAI CLIP model. Some checkpoints are focused solely on 
project tags, while others include artistic descriptions, capturing the essence and 
atmosphere of the creative endeavour. The impact of fine-tuning was assessed by 
conducting inference on image classification tasks and image-text-pair correlation 
tasks, comparing the results of our fine-tuned checkpoints with the original pre-trained 
checkpoints from OpenCLIP. 

3.1. DATASET 
We construct a comprehensive image-text dataset comprising over 1 million images 
paired with corresponding textual descriptions. This dataset is curated by sourcing 
image and text pairs from publicly accessible internet resources. The images 
exclusively consist of photographs of recently completed projects, while the text 
descriptions encompass project-related details. These descriptions often convey the 
essence of projects in an abstract or artistic manner. Additionally, the information 
includes project tags, specifying components present in the images, such as building 
materials or architectural elements. 

3.2. PROMPT 
As CLIP evaluates the similarity between a sentence and an image, the training of the 
CLIP model with a classification dataset often involves prompt engineering (Radford 
et al., 2021). Typically, tags or classes are formed into sentences using determiners. 

In our work, we employ a diverse array of tags to describe images from various 
perspectives. These include: 

● MediaTags: Type of graphic media, e.g., 'photograph', 'architectural drawing'. 

● UtilityTags: Describing spatial utilities of the building, e.g., 'bathroom', 'courtyard'. 

● ProjectTags: Indicating the program of the project, e.g., 'residential', 'public', 'office'. 

● ElementTags: Detailing architectural elements shown in the image, e.g., 'stairs', 
'arch', 'handrail'. 

Notably, the images we collected may not encompass all tag building types. This 
aspect introduces certain limitations to our dataset, which we will discuss further in 
Sections 5.1 and 5.3. 

We developed a procedure to convert these mixed tags into sentences, prioritizing 
them based on their significance in the image, thereby setting up image-text pairs.  
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For an image encompassing all four tag types, the format is as follows: 

 "This is a {MediaTag} of {UtilityTag} in {ProjectTag}, showing 
{ElementTag}." 

In cases where an image lacks certain tag types, for instance, only project and 
element tags, the format adapts:  

"This is {ProjectTag}, including details of {ElementTag}." 

Additionally, if project information collected includes the design studio and 
description, these elements are also incorporated:  

"{TagPromptedSegment}, designed by {DesignStudio}, with the following 
description: '{Description}'." 

A few fully prompted text-image pairs are displayed below in Figure 1. 

Figure 1. 6 images extracted from training dataset with their corresponding text listed below (from 
left to right, top to bottom). Images were upscaled from 224x244 

● this is a garden in a house, include details of doors, facades, lighting, designed by 
plus tongtong, that has the following descriptions: "+tongtong Transforms 
Traditional Toronto House into Tasteful Modern Home that Honors East-end 
Neighborhood" 

● this is an image of an architecture project, designed by auer weber, that has the 
following descriptions: "Sourcane is a new sports, leisure and wellness swimming 
hall in Douai, in the North of France. Due to its location, the aquatic centre will be 
an essential part of the future eco-quarter of Le Raquet, a new city district, at whose 
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heart will be a landscaped park. The new swimming hall lies at its northeastern end, 
at the interface between the artificial landscape of the park and the urban structure 
of the city. The project is oriented towards the future tramway station and a central 
urban square." 

● this is an architectural drawing of a factory, designed by dp architects, that has the 
following descriptions: "The building housing the new headquarters of Sunray 
Woodcraft Construction is one of the first to be completed as part of the newly 
positioned International Furniture Hub in Sungei Kadut, Singapore. It presents an 
opportunity to look afresh at the light industrial factory type, stacking production 
processes in order to optimise working conditions." 

● this is a museum, include details of facades, doors, designed by guinee et potin 
architects, that has the following descriptions: "French architectural photographer 
Stphane Chalmeau shared with us the Rennes Metropole Museum by french 
architects Guine et Potin." 

● this is a kitchen in an apartment, include details of stairs, facades, handrails, lighting, 
designed by leau design, that has the following descriptions: "The apartment estate 
market which seemed not to be withered is cooling now. As the imprudent house-
poor, who borrows the money to buy a house even if the interest rate is low, 
disappears, the fever of becoming to farming for a moment with the longing for the 
life in a country house is passing like a wind. And as changing the interest to the 
investment of the profitable real estate, the interest about a leasing profitable 
building of neighbourhood living facilities with an integration of a habitation house 
is increasing." 

● this is a house, include details of facades, designed by neostudio architekci, that has 
the following descriptions: "This project is located on a picturesque plot that 
originally was a home for seed drying installation of Agricultural University - and 
with its magnificent Acacia trees plantation and natural splendor was a design 
challenge for us." 

3.3. GENERAL PURPOSE DATASETS AND PRE-TRAINED MODEL SE-
LECTION 
We developed two distinct types of image-text paired datasets: the first comprising 
solely prompted tags, and the second encompassing both the prompted tags and project 
descriptions. 

Each dataset underwent a split, allocating 60% for the training dataset and 40% for 
use as a validation/benchmark dataset. The 60% designated for training was then 
combined with two extensive image-text-pair datasets: LAION 400M (Schuhmann et 
al., 2021) and CC3M (Sharma et al., 2018). These datasets are widely recognized for 
their broad range of general content and are typically utilized in CLIP training. 

Owing to limitations in computational resources, we incorporated only a small 
portion of the LAION 400M dataset and one-fifth of the CC3M dataset. This selective 
integration, in combination with our training dataset, was employed to fine-tune our 
model. 
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For the pre-training model, we utilized ViT-B/16 LAION400M (Release 
Pretrained Weights · mlfoundations/open_clip. (n.d.). GitHub. 2023), a model 
previously trained by OpenCLIP (Cherti et al., 2023). 
 
Model Process Archiclip Dataset (ours) Laion-400m Cc3m Training 

dataset 
size 

tag and descrip-
tions 

only tag 

    60% 40% 60% 40% 0.15
% 

100 

% 

18.1
% 

  

ArchiCLIP- 
tagdcsp (ours) 

finetune ~600k       ~600k   ~600k ~1.8m 

validation/ 
benchmark 

  ~400k             

ArchiCLIP- 
tagonly (ours) 

finetune     ~600k   ~600k   ~600k ~1.8m 

validation/ 
benchmark 

      ~400k         

ViT-B/16 
LAION400M 
(open-clip) 

training 
(open-clip) 

          ~413m   ~413m 

benchmark   ~400k   ~400k         

Table 1. Table showing the datasets we used and how they were merged before proceed with training 

4. Experiments 

We fine-tuned the ViT-B/16 LAION400M model on our two merged datasets for 8 
epochs. The initial learning rate was set to 1e-5 with a learning rate scheduler featuring 
cosine decay to optimize the gradient descent. 

The finetuning process was carried out on an Nvidia A100 80GB graphic card with 
an batch size of 600 to maximize the utilisation of GPU memory. 
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4.1. TRAINING  

Figure 2. The training curve of tag only dataset showing CLIP loss against epoches 

Figure 3. The training curve of tag and description dataset showing CLIP loss against epoches 

Figure 2 and Figure 3 demonstrate the training curve during fine-tuning. Model already 
started showing traces of overfitting as the training curve flatten around 6th epoch. We 
believe that this is partially due to the size of our dataset, further discussed in 5.1 

4.2. EVALUATION 

Due to our dataset not being a single-label classification dataset, as mentioned earlier 
in section 3.2, the common benchmarks for CLIP models, which typically evaluate 
zero-shot classification tasks, cannot be applied to ArchiCLIP. 

Therefore, we developed our own benchmark. For each image, this benchmark 
calculates a CLIP correlation against all possible tags. The tags with the highest 
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correlation scores are selected for comparison with the ground truth in the dataset. The 
number of tags chosen matches the count of tags in the ground truth. For each correct 
tag identified, the model earns a score equal to the reciprocal of the number of ground 
truth tags in that corresponding tag category. 

𝑆!"#!$%& = 𝑠𝑐𝑜𝑟𝑒	𝑜𝑓	𝑚𝑜𝑑𝑒𝑙	𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑	𝑖𝑛	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑛𝑔	{𝑡𝑎𝑔𝑡𝑦𝑝𝑒}	𝑡𝑎𝑔𝑠 

𝑁!"#!$%& = 𝑐𝑜𝑢𝑛𝑡𝑠	𝑜𝑓	𝑖𝑚𝑎𝑔𝑒𝑠	𝑡ℎ𝑎𝑡	ℎ𝑎𝑣𝑒	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	{𝑡𝑎𝑔𝑡𝑦𝑝𝑒}	𝑡𝑎𝑔𝑠 

𝑛',!"#!$%& = 𝑐𝑜𝑢𝑛𝑡𝑠	𝑜𝑓	{𝑡𝑎𝑔𝑡𝑦𝑝𝑒}	𝑡𝑎𝑔𝑠	𝑏𝑒𝑙𝑜𝑛𝑔	𝑡𝑜	𝑖𝑚𝑎𝑔𝑒	{𝑖} 
𝑐',!"#!$%& = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡	{𝑡𝑎𝑔𝑡𝑦𝑝𝑒}	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑏𝑒𝑙𝑜𝑛𝑔	𝑡𝑜	𝑖𝑚𝑎𝑔𝑒	{𝑖} 
 
𝑆!"#!$%& =

1
𝑁!"#!$%&

<
𝑐',!"#!$%&
𝑛',!"#!$%&

)!"#!$%&

'*+

 

 
Checkpoint epoch MediaTag UtilityTag ProjectTag ElementTag 

ViT-B-16 
(open-clip) 

n/a 0.620  0.450  0.245  0.467  

ArchiCLIP 
description 
(ours) 

5 0.752  0.698  0.135  0.644  

6 0.510  0.677  0.090  0.559  

7 0.508  0.640  0.141  0.627  

8 0.610  0.679  0.116  0.575  

ArchiCLIP 
tagonly 
(ours) 

5 0.575 0.763 0.204 0.690 

6 0.563  0.762  0.240  0.707  

7 0.573  0.742  0.231  0.735  

8 0.541  0.783  0.275  0.707  

 

5. Limitations and Future Improvements 

When evaluating our finetuned model, we identified several limitations affecting its 
performance. 

5.1. DATASET  
As mentioned in section 3.2, not all images in our dataset contain all four types of tags. 
Upon further manual examination, we found that in many cases, the tags sourced from 
the internet are a subset of what is depicted in the images. For instance, an image may 
feature a 'staircase' that is not reflected in the tags. This discrepancy likely arises from 
sourcing images from the internet, where the information on webpages may not fully 
capture all elements in the image. 

This inconsistency impacts the model's performance. The loss function of the CLIP 
model is defined as the difference between the cosine similarity matrix and the identity 
matrix (Radford et al., 2021). Text that fails to fully describe the image contributes to 
loss, even if the model's prediction is accurate, thus making the dataset less reliable. 

76



ARCHICLIP, ENHANCED CONTRASTIVE LANGUAGE 
IMAGE PRE-TRAINING MODEL WITH 

ARCHITECTURAL PRIOR KNOWLEDGE 
 

Moreover, most CLIP models are trained on much larger datasets with significant 
computational power. Studies have shown that the performance of CLIP models 
generally improves with larger datasets (Gadre et al., 2023). For comparison, the pre-
trained model we used for fine-tuning, ViT-B-16 LAION400M, was initially trained 
on the Laion400M dataset, comprising approximately 413 million data points (Cherti 
et al., 2023). Our dataset, combined with a portion of Laion400M and CC3M, only 
reached 1.8 million data points, less than 0.5% of the initial pre-trained model's size. 
This substantial difference contributes to the performance loss. 

5.2. BENCH MARK AND EVALUATION 
CLIP models are generally adept at evaluating correlations between objects in an image 
and descriptive text. However, their ability to assess the correlation between an image 
and abstract descriptions remains undetermined. To our knowledge, no existing 
research focuses on evaluating these correlations in the field of architecture. This lack 
of precedent makes it challenging to gauge our model's success in this area. 

5.3. AREAS OF IMPROVEMENTS 

We believe that with targeted improvements, the model's performance can be further 
enhanced. 

● Manual Labeling: With sufficient architects involved, we could more accurately 
relabel our dataset, thereby improving its accuracy and optimizing tag 
comprehensiveness and consistency. This addresses the limitation mentioned in 5.1 

● Human Benchmark: Engaging a sufficient number of architects, we could establish 
a human benchmark for assessing the correlation between images and abstract 
descriptions. This would provide deeper insights into standard performance for such 
image-text tasks, addressing the limitation mentioned in 5.2 

● Classification Tasks: One of the primary research areas in computer vision is image 
classification. The CLIP model, a sub-field of this area, has made significant strides 
in processing natural language and in zero-shot learning. Nonetheless, due to the 
unique format of its training dataset, certain methods that improve image 
classification accuracy are not applicable for enhancing the accuracy of CLIP's 
image-text pair matching tasks. By reformating our dataset, we might transform the 
training dataset into multiple image classification datasets and apply existing 
methods (Wortsman et al., 2022) from related fields to optimize the model's 
performance 

6. Conclusion 
Compared to the pre-trained checkpoints, our fine-tuned model performs better in 
architecture-specific image classification tasks and demonstrates some capabilities in 
relating abstract and artistic descriptions with architectural photographs. In a practical 
context, the post-optimized CLIP model can find application in various ways. For 
example, it can train diffusion models, serve as a guiding discriminator for other 
generative models, and even be harnessed to develop a specialised semantic-based 
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searching engine explicitly tailored for architectural purposes. It is foreseeable that 
ArchiCLIP will play a critical role in AI-generated process. Limited by our resources, 
our dataset has yet to undergo review nor filtering by human designers, leaving room 
for potential improvements in dataset qualities. 
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