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Abstract. This paper addresses an urgent need for efficient and 
accurate flood damage assessment, a process currently hampered by 
labor-intensive and time-consuming methods. The study aims to 
harness the power of deep learning (DL) to create a model that 
integrates bitemporal satellite images and social media photos for 
automated flood-damaged building detection. Our original contribution 
lies in the novel combination of diverse data sources, which has shown 
the potential to enhance the generalization of damage detection models. 
The research question we tackle is: How can the integration of multi-
source data improve the performance of flood damage detection? We 
deployed a bitemporal image transformer (BIT) incorporating a 
Convolutional Neural Network (CNN) as a feature extractor to merge 
features from satellite and social media images. Our model was tested 
on the Midwest-flooding dataset and yielded a 2% F1-score 
improvement over the baseline method while maintaining fewer 
parameters. This preliminary evidence suggests that social media 
disaster images contain crucial information for enhancing the 
performance of Disaster Detection Deep Learning (DDDL) methods. 
Integrating multi-source data proves beneficial in developing more 
sophisticated DDDL methods, which can promise fast and effective 
humanitarian relief in disaster scenarios. 

Keywords. Deep learning, Change detection, Data fusion, Model 
distillation, Remote sensing, Social media image dataset. 

1. Introduction 

Change detection (CD) in remote sensing is essential for monitoring alterations in the 
Earth's surface over time. It involves identifying differences between multi-temporal 
remote sensing images taken in the same geographic area (Bruzzone and Bovolo, 
2013). This process is pivotal for understanding land surface changes and has been 
extensively applied in diverse fields such as disaster damage assessment, agricultural 
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measurements, and ecosystem monitoring. The fusion of artificial intelligence 
techniques with traditional remote sensing practices represents a frontier in the 
evolution of CD technologies (Shi et al., 2020). 

In disaster assessment, the study of flood events has garnered considerable 
attention. The Intergovernmental Panel on Climate Change (IPCC) underscores the 
growing importance of evaluating flood-induced damages, propelled by the increasing 
frequency and severity of such events. Traditional damage assessment methods are 
thorough yet suffer from being labor-intensive, time-consuming, and inherently 
uncertain during the initial phases of damage estimation (Shi et al., 2020). Fortunately, 
the advent of DL models in the change detection field promises a new avenue with 
considerable potential for disaster assessment tasks. 

Deep Learning-based Change Detection (DLCD) models are generally architected 
around an encoder-decoder framework (Shi et al., 2020). Earlier works conveniently 
adapted image segmentation algorithms for CD issues with minor modifications 
(Alcantarilla et al., 2018). More recent approaches have shifted towards a dual-stream 
architecture (Caye et al., 2018), using Siamese encoders for dual temporal inputs.  

Despite DLCD methods achieving promising results in various disaster scenarios, 
challenges with model robustness persist. A probable cause is using standard datasets 
for training, such as CCD (Lebedev et al., 2018) and WHU (Ji et al., 2019), which 
imply an abundance of positive change labels. However, when applied to disaster 
detection tasks, especially with the xBD dataset used for assessing building damages, 
changes can be subtle and often at a pixel-level resolution, making it difficult for 
existing DLCD encoders to extract sufficient features from limited training data. 
Acquiring large volumes of annotated pre- and post-disaster imagery is also highly 
costly. 

The primary objective of this research is to enhance the generalization and 
efficiency of flood damage detection. Our approach incorporates supplementary data 
from social media images, which contain similar disaster-related information as 
satellite images but are more readily available. By integrating these two data sources, 
our model aims not only to improve the generalization of flood damage detection but 
also to augment the model's performance under conditions of limited positive labels 
availability. 

The contributions of our work are threefold:  

● We capitalize on low-cost social media data as supplementary information in 

scenarios where satellite images are sparse, enhancing the model's performance. 

● The model encoder has been refined to effectively utilize features from diverse data 

types, including disaster information. 

● In the Midwest-flood event, the proposed methods can detect more complete 

building outlines and a greater number of affected buildings with the same 

parameter count. 

2. Related Work 

2.1. DEEP LEARNING CHANGE DETECTION  
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Traditional image segmentation models inspired initial DLCD methods. Alcantarilla et 
al. (2018) capitalized on the ability of  DL model  to generate change maps by feeding 
CNN with pre- and post-alteration images. Some studies have focused on expanding 
the model's reception field (RF) to attain global information in images. For instance, 
Chen et al. (2022) exploited attention mechanisms to boost the model's ability to 
recognize contextual tags. 

Specifically in disaster assessment, Nguyen et al. (2017) were the first to use a pre-
trained model to analyze disaster scenes, demonstrating the potential application of DL 
in this domain. To develop DL models for disaster scenes, Gupta et al. (2019) created 
the xBD dataset, which includes 19 disaster events of 5 types. Unlike multi-class 
detection problems, Kim et al. (2022) focused on improving rapid response capabilities 
during disasters. They used a simple Siamese-structured ResNet18 to process pre- and 
post-disaster images, establishing a lightweight network for detecting water-related 
building damage areas.  

2.2. MODEL GENERALIZATION AND SPARSE DATA 

Many researchers are devoted to enhancing model generalization performance in 
situations of data sparsity, with a common strategy involving modifications to the 
network architecture. Many networks in the DLCD domain have adopted U-Net as the 
backbone for further improvements (Fang et al., 2022). Apart from leveraging U-Net, 
pre-trained ResNet is also a prevalent choice as the backbone (Caye et al., 2018) (Kim 
et al., 2022). However, such small-scale networks tend to be data-oriented, which can 
limit their generalization capability (Zhu et al., 2017). 

To train DL models with robust generalization skills, a large dataset containing 
critical feature information is essential (Zhu et al., 2017). Unfortunately, no public 
benchmark dataset for disaster detection is available from satellite images. The xBD 
dataset, covering the most diverse range of disaster events, includes 23,000 annotated 
images of building damage across six disaster types. However, it falls far short when 
compared to large-scale image classification datasets today, such as ImageNet (Deng 
et al., 2009), which has millions of images. Recently, the Incident1M dataset, released 
by Weber et al. (2023), includes 977,088 images sourced from social media, covering 
43 disaster categories and 49 location category labels. It is the only large-scale dataset 
related to disasters. 

Research by Yosinski et al. (2014) demonstrated that initializing DL models with 
transfer features can significantly enhance their generalization performance. 
Researchers frequently adopt this strategy. For example, Chen et al. (2022) used a 
ResNet model pre-trained on ImageNet for their bitemporal image transformer (BIT) 
model. Kim et al. (2022) used pre-trained models trained by standard satellite images 
to strengthen their encoder, effectively increasing the model's ability. 

3.  Proposed Method 

3.1. METHOD PROCEDURE 

We propose an innovative technique to enhance the disaster change detection model's 
capability by integrating multimodal data (Figure 1).  
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Figure 1. Overview of the proposed method. 

The first step involves curating a social media image dataset encompassing flood 
disaster information by obtaining all images labeled as 'flood' from the comprehensive 
disaster dataset Incidents1M (Weber et al., 2023). The second phase initiates the 
training process within the ResNet18 model (He et al., 2016) using the established 
image dataset, extracting the embedded disaster information. In the third stage, we 
transfer the frozen parameters from the convolution layer obtained in step 2 into our 
formulated DDDL method by initializing the model's encoder.  

3.2. MODEL ARCHITECTURE 

3.2.1. Overview of Model Architecture 

Figure 2. The proposed modified model architecture. 

The overall process of our model is presented in Figure 2. Initially, we scrutinize the 
architecture of the encoder used for information extraction by the satellite image 
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segmentation model (a). After defining the form of the feature extractor (b) based on 
this encoder. Using the social media images S as inputs, we train the features extractor 
to obtain fixated parameters for the convolutional layers. These parameters are then 
transferred into the encoder of the satellite image segmentation model. D(1) and D(2) 
are introduced into the enhanced satellite image segmentation model. Post-Encoder 
processing, we extract the features maps F(1) and F(2), which are then input into the 
Transformer module (c) to amplify the image feature information, producing the 
enhanced Attention feature maps A(1) and A(2). Finally, through our Decoder, we 
generate pixel-level predictions P. 

3.2.2. Satellite Image Segmentation Model Based on Attention Mechanism 

Our approach is designed to allow the new model to focus on disaster information 
within social media disaster images. Our intuition suggests that once a model possesses 
this pre-acquired disaster knowledge, it will enhance its understanding of disaster-
stricken satellite images compared to the generic knowledge used in the original model. 

We contemplated that disaster information gleaned from social media disaster 
images could also be preserved in feature maps F(1) and F(2). However, features that 
can be retained after satellite image training may be submerged during the 
downsampling process. Therefore, we hoped to enhance the disaster features hidden in 
the feature maps through the attention mechanism. Considering both computational 
resources and model structure, we chose to improve on the bitemporal image 
transformer (BIT) model (Chen et al., 2022) as the backbone for our experiments. 

3.2.3. Process of Extracting Disaster Information from Social Media Images  

The task of our feature extractor is to transform the flood information present in social 
media disaster images into high-level semantic concepts that align with the encoder 
paradigm of our primary model. Given the encoder structure of our main model, as 
depicted in Figure 3b, we built our feature extractor, utilized four convolutional layers 
to extract information from the images, and conducted layer-wise visualization. 
Ultimately, we retained the parameters within the first four convolutional modules and 
transferred these to the BIT model through parameter initialization. 

Figure 3. The processing of transfer disaster information to (b) The BIT model. 
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4. Experiment 

4.1. EXPERIMENTAL SETUP 

This section of the experiment is divided into three subsections. Section 4.1.1 the 
dataset utilized in the experiment. Section 4.1.2 implementation details of the 
experiment. Finally, Section 4.1.3 describes the metrics used for evaluation. 

4.1.1. Dataset 

This study involves two phases of experimentation, each utilizing a different subset of 
datasets. Initially, We trained the feature extractor on a selected portion of the 
Incidents1M dataset. Subsequently, we carried out the modified BIT model 
experiments using a flood event of the xBD dataset. 

The Incidents1M dataset (Weber et al., 2023) is a large multi-label dataset 
comprising 977,088 images. It encompasses 43 disaster incidents and 49 place 
categories. We utilized a subset of 18,513 images labeled with the 'flood' for feature 
extractor training. 

The Midwest-flooding dataset is a subset of the xBD dataset, consisting of 445 pairs 
of pre- and post-disaster satellite images related to flood events. We adhered to the 
standard dataset partitioning method (training/validation/test) and segmented the 
images into smaller 256x256 pixel tiles. This process yielded a final dataset comprising 
13,671 pairs of images for training, 1,280 pairs for validation, and 1,376 pairs for 
testing. 

4.1.2. Implementation Details 

We implemented our model using PyTorch and conducted the training on a single 
NVIDIA RTX A6000 GPU. 

For the feature extractor model, we utilized Adam as the optimizer. We set the 
learning rate at 0.0001 and conducted the training over 15 epochs.  

The modified BIT model's training strategy is the Step Learning Rate Scheduler 
(StepLR). We initiated the learning rate at 0.00003, with provisions to decay this rate 
to 20% of its initial value after 60 epochs. The training process, using Adam as the 
optimizer, spanned 200 epochs. 

4.1.3. Evaluation Metrics 

This study's primary metrics for evaluating the model's performance are the parameter 
counts and the F1-score for various classes. The F1-score is derived from the precision 
and recall values calculated on the test set, defined as follows: 

𝐹1 =
2 ⋅ precision ⋅ recall

precision + recall
 

Additionally, both precision and recall metrics are reported, with their definitions 
being: 

Precision =
TP

TP + FP
                               Recall =

TP

TP + FN
 

 

(1) 

(2) (3) 

64



COMBINING SOCIAL MEDIA IMAGES AND 

BITEMPORAL SATELLITE IMAGES FOR AUTOMATED 

DETECTION OF DAMAGED AREAS AFTER FLOODING 

 

In these formulas, TP (True Positive) represents the number of positive samples 
correctly predicted by the model, FP (False Positive) signifies the number of negative 
samples incorrectly predicted as positive, and FN (False Negative) indicates the 
number of positive samples incorrectly predicted as negative. 

4.2. BENCHMARK DLCD METHODS COMPARISON 

To evaluate the effectiveness of our proposed method, we compared it with three state-
of-the-art (SOTA) DLCD benchmark methods for disaster detection: 

● SNUNet (Fang et al., 2022): SNUNet is currently recognized as the most advanced 

DLCD method utilizing UNet as its backbone. 

● P2V （Lin et al., 2023): P2V offers comprehensive temporal modeling to depict the 

change process and is considered at the forefront of temporal modeling for DLCD. 

● BIT_base (Chen et al., 2022): Since our model is a modification of the BIT, it is 

imperative to compare it with the BIT_base for a comprehensive assessment. 

In this experiment phase, we employed the same hyperparameters and code to train 
the three benchmark DLCD methods described in Section 4.2 and the modified BIT 
model mentioned in Section 4.1.2. Table 1 compares the performance of these four 
networks on the Midwest-flooding dataset. We evaluated method performances based 
on two dimensions: the model's parameter counts and its F1-score. 

Table 1. Comparison results on Midwest-flooding datasets. 

Model name Precision Recall F1 score Parameters 

SNUNet 0.7649 0.2908 0.4213 10.29M 

P2V-CD 0.7777 0.2755 0.4048 5.42M 

BIT-base 0.7580 0.2663 0.3941 3.04M 

BIT-modified 0.7451 0.2865 0.4141 3.04M 

From the F1-score comparison, our BIT-modified method, as opposed to the 
original BIT-base, showed a decrease in precision by 1.29% but an increase in recall 
by 2.02% and an overall F1-score improvement of 2%. This indicates a more 
advantageous model performance from a quantitative perspective. In practical 
scenarios, especially in disaster response, recall is more critical than precision. Recall 
represents the rate of detecting all affected buildings, while precision indicates the 
accuracy of identified damaged buildings. Therefore, our approach is more suitable for 
disaster relief scenarios, emphasizing rapid identification of potential damage sites. 

When comparing the parameter counts while maintaining the lowest parameter 
counts, our model outperformed the P2V-CD and was slightly below the SNUNet. This 
evidence suggests that our modifications made the model more applicable to disaster 
scenarios, with parameters more efficiently used for storing critical information.  
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Figure 4. Loss on the training set and Precision, Recall, and F1-score on the test set. 

Figure 4 illustrates the loss variation during the training process and the metrics 
change on the test dataset for the models. Our approach maintained the precision 
performance of BIT while significantly enhancing both Recall and F1-score on the test 
dataset. 

5. Discussion 

In the experimental findings presented in Chapter 4, we numerically demonstrated the 
superiority of our enhanced model. This chapter delves into a visual comparison on the 
dataset (Figure 5) to elucidate the advantages of our model over other methods. The 
visual representation employs green to indicate ground truth and white for the 
predictions of each model, with red denoting the portions where the model predictions 
are incorrect. 

We categorize the advantages of our model into three types, as illustrated in Figure 
5. The (a) row represents the proposed method can detect damaged building outlines 
that are undetectable by all other models. Rows (b) and (c) highlight the enhancement 
of our model's recognition capabilities compared to the BIT_base model. Rows (d) and 
(e) demonstrate our model retaining the advantageous performance of the BIT_base 
model. Upon observing the predictions of the BIT-base model and two other SOTA 
methods, it is evident that the BIT-base model can predict some areas that other 
methods cannot. This advantage is also preserved in our BIT-modified model. This 
visual analysis complements the numerical results and provides a qualitative 
understanding of the strengths of our modified model in disaster detection scenarios. 
The ability to identify previously undetected areas and improve upon the original 
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model's performance positions our approach as a promising advancement in the field. 

Figure 5. Visualization results of different methods on the test sets. Different colors are used for 
better view, i.e., We marked the unsuccessful prediction parts in red to show models limitations. 

6. Conclusion 

This paper presented an approach to flood damage assessment by integrating 
bitemporal satellite images with social media images using DL techniques. Our method 
demonstrates a significant improvement in identifying flood-damaged areas, evidenced 
by a 2% increase in F1-score compared to the original models. With its efficient use of 
parameters, the modified BIT model balances performance and computational resource 
requirements, making it suitable for rapid disaster response scenarios. We have made 
certain progress in this study but also encountered several limitations and challenges. 
Given the insufficiently annotated data, our improved model was constrained to 
experimental validation solely on the Midwest-flood dataset. Regrettably, this 
limitation hampers our ability to extend our analysis to a broader range of cases for 
thoroughly testing the efficiency of our modified module. Considering these 
limitations, our future research will employ more sophisticated and detailed methods 
to explore the effectiveness of other disaster scenarios. We believe that these efforts 
will enhance our understanding and utilization of social media image in disaster-related 
contexts, leading to more informed and practical approaches in this field. 
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