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Abstract. Exponential AI development requires an adaptation to new 
technology by traditionally reluctant architects and allied practitioners. 
This paper examines the potential of the software design pattern (SDP) 
model, used in software engineering to capture and reapply designs, as 
one underpinning. Patterns have creativity and pedagogical benefits in 
parametric modelling, yet consideration of AI and broader design 
computing as well as the derivation and versatility implied by an SDP 
model are underexamined. This research questions how, in an AI 
context, new patterns may evolve for varied AI levels and non-
geometrical features. It is undertaken in the Unity game engine with 
critical application of two prominent extant patterns as a computational 
workflow design response to a real-world citizen engagement scenario. 
A novel, feature-agnostic pattern is derived with a simple AI model and 
is verified for other AI models. The work concludes design computing 
patterns can abstract existing pattern knowledge to flexibly evolve and 
apply across rapidly changing AI-enabled design computing contexts 
and thereby assist practitioners to positively respond to AI advances. 

Keywords.  Artificial Intelligence, Computational Design, Software 
Design Patterns, Architectural Practice, Unity 3D, Intelligent Agents. 

1. Introduction 

Computer scientist and entrepreneur Andrew Ng posits that “AI is the new electricity” 
and is developing exponentially (Ng, 2017). Yet as architect and Yale University 
emeritus professor Phillip Bernstein notes (2022, p. 131), architects typically maintain 
a sceptical resistance to the adoption of “new, disruptive technologies”, and an 
enduring lag exists between AI development and its integration in architectural practice 
(Kimm & Burry, 2021). AI is continually evolving within a rapidly changing techno-
savvy society and is in a persistent state of novelty (ibid.); since Ng spoke in 2017, 
broad AI models, like Midjourney or ChatGPT, and emerging industry software 
solutions in domains from early site analysis (see Sidewalk Labs' Delve) to generative 
design (see Evolve Lab’s VERAS), have demonstrated potential to supplant architects’ 
and urban designers’ (“practitioners’”) roles in workflow aspects. Yet full 
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consideration of diverse project criteria requires the creative analysis and synthesis of 
the practitioner. These two contradictions indicate a need for support to practitioners 
when creating their own AI-enabled workflows. This paper examines the model of 
Software Design Patterns (SDPs) and assesses how it may be adapted to aid 
practitioners – typically inexpert programmers – in their own construction of AI-
enabled design computing workflows and tools. “Design computing” is here used in 
the broad sense of Gero (1998) as use of “software with the relevant features and 
utilities to support some aspects of design activity.”  

2. Background and Context  
The formal concept of a pattern as a reusable solution to a common problem, given 

independent of a specific context, was popularised with the publication of A Pattern 
Language: Towns, Buildings, Construction (Alexander et al., 1977). These Alexander 
patterns (APs) were adopted by the programming community, including in the seminal 
book Design Patterns: Elements of Reusable Object-Oriented Software which 
catalogued 23 SDPs (Gamma et al., 1995). As illustration, the singleton SDP ensures 
only one instance of a class may exist, thereby avoiding problems that can arise from 
concurrent access of resources such as database connections. Patterns help developers 
to leverage insights of past designers to avoid common pitfalls or reinventing the wheel, 
and to adopt a higher-level, abstract perspective to remain “in the design” for longer 
rather than prematurely contesting with the intricate specifics of implementing code 
(Freeman et al., 2020, Chapter 1; Shalloway & Trott, 2004, Chapter 5). 

A systematic literature search showed limitations in use of pattern concepts in 
design computing. Pattern models are typically explicitly rooted in APs oriented by 
subsequent pattern-based approaches, and SDP consideration, if any, is narrowly based 
on the work of Gamma et al. As gap 1, although some publications referenced AI 
tangentially – for example Globa or Steenson (Globa, 2015, p. 61; Steenson, 2017, p. 
76) – none focused on the application of patterns to the use of AI in design computing. 

Foremost in the literature are the 13 Woodbury patterns (WPs) that help designers 
create geometry through interacting with the particulars of the parametric design 
software package GenerativeComponents and, more generally, as Woodbury (2010, p. 
186) writes in his book Elements of Parametric Design, “help designers learn and use 
propagation-based parametric modeling systems”. In the controller pattern (CP), for 
instance, a full geometric model may be controlled by a simpler linked model so that a 
user may interact with a model in a “clear and simple way” (ibid. p.191). 

Qian (2009, p. 191) demonstrated that WPs support self-directed and formal 
learning, script development and the potential to introduce novel solutions, and 
collaborative design and practitioner communication. Globa (2015) affirms and 
extends the findings of Qian, although proceeds from Woodbury's book and not Qian 
directly. Globa tested design support through reuse of knowledge by empirical 
comparison of WPs, representing an abstraction reuse approach, with reuse of specific 
scripting solutions. The outcomes of workshop-based studies, in which participants 
used Grasshopper, showed that abstract programming solutions facilitate design 
scripting: they aid user understanding of the essential logic and modelling processes of 
scripting, encourage production of complex script and model outputs, and assist 
translating ideas into designs and exploration of novelty. Additionally, Globa (2015, 
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pp. 280-282) reasons these benefits would extend to other design computing domains. 
Yu and Gero (2015) provided other empirical evidence of patterns by coding 

observed workshop design activities to the distinct stages of a design process ontology, 
thus inferring pattern existence though ready transitions between design process states. 
They conclude that if inferred patterns are extant or developed on the fly is unanalysed 
in their work, and urge that “if we can generalise these transitions to design patterns it 
would be of assistance to architects in conceptualizing their scripting process.” 

The model of SDPs is heterogeneous and there are a number of gaps between it and 
the reviewed literature. This paper focuses on two such: how patterns arise, and their 
flexibility across computational environments. 

Gap 2 concerns pattern derivation. An SDP is a response to a “recurring” design 
problem (Buschmann et al., 1996, Chapter 1; Freeman et al., 2020, Chapter 13) and 
should express “successful designs” (Gamma et al., 1995, p. 1). The part of experience 
of software designers in deriving patterns is clear: patterns come from the “collective 
experience of skilled software engineers” and “prior experience” of software designers 
that is “learned by designers and users over the years” (Buschmann et al., 1996, Chapter 
1; Gamma et al., 1995, p. 1; Shalloway & Trott, 2004, pt. 1). 

Qian demonstrated pattern derivation through forming a large corpus of design 
examples in participant observer workshops followed by interview coding and other 
analysis. The process, although sound, cannot serve to identify pattern use in rapidly 
evolving contexts or in the informal settings of practice. The method of Yu and Gero 
could in principle identify pattern existence in even a singular workflow, but does not 
define patterns. Woodbury (2010, p. 189) asserts the importance of the experience of 
the designer: “To write a pattern is to listen to yourself and your colleagues.” In the 
works surveyed, the particulars of how an individual designer may derive a pattern are 
left unstated. As Qian (2009, p. 191) concluded, the question of “how a pattern… can 
be polished and enriched by designers' active involvement and communication” 
remains open. The “pioneering spirit” of Pemberton and Griffith (1998), who derived 
patterns for collaborative workspaces and technology, offers a possible response – a 
pattern once found could prompt the identification of another pattern per new needs. 

Gap 3 concerns pattern versatility. An SDP typically has enduring use across 
diverse computational environments; the singleton SDP, for instance, is as applicable 
to C++, released in 1985, as it is to Rust, released in 2015. In contrast, idiomatic SDPs 
are particular to a given language (Buschmann et al., 1996, sec. 1.3). An idiom useful 
for one programming paradigm is not necessarily applicable to another paradigm. 

The patterns models surveyed tend towards idiomacy. Globa extended WPs from 
GenerativeComponents to Grasshopper but they are still within the domain of 
propagation-based parametric modelling systems. Furthermore, focus is on 
geometrical primitives rather than on manipulation of more general built environment 
features such as structural members, circulation paths, houses, or styles. 

3. Research Questions and Method 
The lead author designed and conducted a research-through-design (RtD) 

investigation to test SDP potential at those three gaps. RtD is concrete research through 
the action of the practitioner to create an experimental object within and regulated by a 
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specific practice context (Herriott, 2019). The object is a means to uncover and convey 
knowledge, not the end goal. Two complementary research questions on pattern 
derivation and versatility in an AI-attuned design computing practice context were 
considered. On derivation, what potential exists to evolve new patterns from an existing 
pattern? On versatility, may such patterns be applicable to different types of AI and 
features other than geometry alone? 

An extensible model of AI is essential to address the aspect of practitioner use of 
diverse AI. This research uses an adaptation to design of a computer science model of 
intelligent agents (IAs) that perceive, decide, and act (Kimm, 2022). Beyond the agent 
scale, the model considers AI from a teleological perspective of the designer providing 
value to the client rather than analysing the underlying AI technical mechanics directly. 
It offers a framework of increasing AI sophistication that, rather than imposing an 
arbitrary, inflexible partitioning of AI and not-AI, sets out a continuum from AI that 
reflexively responds to stimuli to AI with a complex internal world model. 

Initial patterns are taken from WPs for their well-described, prominent, 13-strong 
pattern catalogue of demonstrated practitioner benefit. Two are selected in the next 
section for their model clarification and abstraction ability. 

The practice context which enables consideration of features other than geometry 
is an engagement with Aurecon – a global design, engineering, and advisory company 
– and its online community engagement software tool commissioned by a government 
client which sought citizen stakeholder preferences for the design of a harbourside park 
in central Sydney, Australia (https://harbourpark.sydney/). Website users may select 
and position on a bare site three to five 2D park feature graphics from a library of 
fourteen cultural, health/safety, landscaping, pedestrian, or recreational features 
(Figure 1). An aim, per the tool website, was to permit a user to create a design that 
“will contribute valuable information that will help us determine how the park will look 
and feel based on the features and activities that matter to you.” Graphics are animated 
on short loops – for example, a person at an exercise station is shown using it – and 
resize to give a sense of perspective. The graphics are otherwise invariant: the user is 
presented with little scope to indicate any preferences in this static framework. 

The research computational starting point is an initial study on capturing citizen 
street tree planting preference, only imprecisely given, and then making a definite 
move in a search space of appropriate trees. A user interacting with this may trace a 
desired tree massing profile on the screen. The prototype then analyses the path of the 
user’s indicative 2D line, using the $1 Unistroke Recognizer algorithm (Wobbrock et 
al., 2007), and suggests one option from a curated library of 3D precedents (Figure 2). 

A design goal was thus formulated for reimaging the harbourside park app (HPA): 

How may the user have more latitude to convey their preferences 

Figure 1 The workflow of the harbourside park app. 
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imprecisely or incompletely, and how may they receive guidance as they 
develop their design? 

The Unity game engine was selected as the research platform for its industry use, 
capacity for design analysis, and accessibility to non-programmers (Huang et al., 
2021). It supports non-parametric modelling and, via C#, flexible exploration of AI. 

Prototype evaluation was by interactive demonstration to and interview of Aurecon 
employees. As the research focus is the pattern exploration process, rather than high 
prototype utility and usability, a response to the design goal need not be unconditionally 
successful but must demonstrate in its seriousness that the investigation took place in a 
bona fide design computing practice scenario. Prototype evaluation is thus restricted. 

4. Results 
Two WPs were selected as pattern exploration seeds for their capacity to map user 
design intent expression to some point in the search space of a design computing tool, 
as implied by the design goal. The controller pattern (CP) was described above; in the 
reactor pattern (RP), an object responds to another object as an “interactor point” 
within a common modelling environment. Each simplifies the set of inputs to a model 
and is conceptually abstract rather than narrowly geometry oriented. Nonetheless, they, 
although applicable to placement of park features, for instance, do not fully address the 
design goal that deals with the non-concrete domain of flexible preference expression. 

4.1. APPLYING THE WOODBURY CONTROLLER PATTERN 

The initial computational study embodies the CP to a limited degree: the specification 
of a tree massing as a direct one-to-one mapping of sketched profile preference to 
sampled tree elevation fits the abstracting CP classification of Woodbury (2010, p. 
192) of a “simple version of the main model that suppresses unneeded detail”. The 
transforming mode of the CP, which “changes the way you interact with a [full] model” 
(ibid. p192), suggests a brokering model may be inserted into the full model to allow 
nuanced expression of the feature preferences within the wider environment. 

Accordingly, the initial prototype was updated such that a user could express a tree 
preference – shading provided by a tree – distally by interacting with the model 
environment rather than proximately by direct selection. The processing of the library 
of trees was redeveloped so that it may be searched by shading profile rather than 
elevation profile as in the initial prototype. In the iterated tree workflow (Figure 3), a 
user clicking on a grass canvas places a new tree and can draw the desired shading 
profile. The system displays the best-match 3D tree and the profile stored within the $1 
gesture recogniser. Any instantiated tree can be selected and repositioned by the user. 

The resulting prototype has limitations as a simplified model of environment 

Figure 2 The base computational exploration. 
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conditions and user interaction. First, shadow sketching is supported only for drawing 
on flat ground. Second, due to preprocessing, only one time of day can be supported. 
Third, the sketching method permits a user to specify one tree feature preference with 
a greater dimensionality than can be captured readily in a list of choices, yet the 
treatment within the prototype, once that sketch is analysed by the gesture recogniser, 
is precise – the prototype never provides options where ambiguity of choice may exist. 

4.2. APPLYING THE WOODBURY REACTOR PATTERN 
The HPA provides guidance only on submission of a design and a user cannot change 
any aspect of a feature to a preferred state by indirect or direct interaction. To test the 
RP for this, a matrix was developed to analyse the potential for RP application if taking 
features, rather than geometry, as the material of that pattern. The matrix sampled tree, 
light, and path features from the HPA to model how a feature may respond to the 
proximity of a RP interactor point which, rather than being an abstract position in space 
with no other associated quality, is itself a feature in this treatment. The RP, rather than 
operating on geometry that responds in its position, direction, or scale, here provides a 
schema for features to dynamically moderate their design role. 

Matrix feature response analysis reveals a deficiency of direct use of the RP. If 
treating the RP interactor point as a feature, rather than as an abstract position in space, 
the interactor point must itself change. As example from the matrix, a path feature as 
an interactor correctly induces in nearby trees a change to low branchfall risk. 
Conversely, a tree moving as an interactor near to a path causes a path change, such as 
to preserve a clear root buffer zone, yet is itself not changed: it takes on no attribute of 
low branchfall risk, and thus a risk to public safety is not improved. Branchfall in this 
example is a proxy for any interactor feature attribute that requires moderation. 

Therefore, an adaptation of the RP must be reciprocal: any feature engaged in the 
model should operate both as an interactor and a reactive result. Counterintuitively, 
given the criticism of one-sided interaction directly above, this symmetry indicates that 
exploration of reactive response in the reactor pattern might, for a suitable subset of 
features, be realised in the developing prototype through a reactive response in either 
of the moving interactor or the stationary features. Moreover, a focus on the reactive 

Figure 3 The workflow of the prototype following consideration of the controller pattern. 
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response of a moving feature facilitates consideration of features that are static for 
reason of being preexisting site conditions (e.g. overshadowing) or of being fixed in an 
earlier stage of the design process (e.g. primary pedestrian circulations). 

The workflow was updated so that a tree species is selected for a site location by its 
appropriateness (Figure 4). Each tree library tree is thus tagged with its characteristics. 
In this test, the attribute set is limited to shade tolerance, soil condition, and branchfall 
risk. These three measures represent the many possible factors and potential trade-offs 
that could be incorporated, including considerations of hydrology, heat island effect, or 
bird life. The notional tags do not reflect the actual species requirements; however, tag 
selection was curated to create a crude congruence between the tagged requirements 
and the appearance of the tree models. The Unity implementation is seen in Figure 5. 

Despite limitations noted previously, workshop feedback from two Aurecon 
leaders in digital innovation and engagement indicated the outcome of consideration 
of the CP and RP in the prototype design process met the design goal and could usefully 

Figure 4 The workflow of the prototype following consideration of the reactor pattern. 

Figure 5 The progress of one tree in the final prototype using the workflow of Figure 4. 
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extend the HPA workflow, particularly for diverse government-based projects and 
establishing social licence. Nonetheless, separate informed comment by an academic 
and landscape architect formally interviewed on the CP stage results warned against 
uncritical use: “design is much more comprehensive than just placement of objects.” 

4.3. A SYNTHETIC NOVEL PATTERN 

Critical application of the encapsulated knowledge of two WPs to the design problem 
evolved a novel method. That solution is here expressed as a pattern using the four 
prime descriptors urged by Woodbury: “Name, What, When and How” (2010, p. 189). 

Name: Polymorphic Feature (PFP). 
What: Allow a feature to change its own nature according to its context. 
When: Useful if feature solution space position information is initially incomplete. 
How: Model a feature with an IA interface. Develop one IA to update model 

attributes per dynamic environment conditions, bounding the solution space search by 
domain knowledge and any original user intent. Implement new IA models as required. 

4.4.  CROSS-DOMAIN APPLICATION OF THE NOVEL PATTERN 

To test the PFP and its capacity to harness diverse AI, the simple, reflexively responsive 
IA of the prototype was replaced with an IA of a more complex internal world model. 
This, as a proof of concept, was carried out manually using commercial large language 
model and text-to-image model services. For each new tree position, the prototype 
output a ChatGPT prompt customised with context specific tags (in italics below): 

Determine a commonly used tree species for a sunny city park location with 
loam soil in Sydney, Australia. You must consider factors of urban planning, 
botany, landscape architecture, and other relevant disciplines. Then write a 
text-to-image (Midjourney) prompt of a mature example of that species. The 
prompt should follow this formula: “/imagine prompt: [subject], [your 
descriptive keywords or phrases], [background] [art style] --ar 
[width]:[height]”. Use a low poly style, and a plain white removable 
background is essential. Adjust the aspect ratio (“--ar”) as appropriate for the 
dimensions of your selected tree. 

An example generated Midjourney prompt for a recommendation of Eucalyptus 
globulus (blue gum), which also appears in the City of Sydney tree species list 
(swi.nu/trees), is below with output and variations in Figure 6: 

Figure 6 Midjourney outputs for the quoted prompt (two leftmost images), prompted juvenile 
examples (two centre images), and a reference blue gum photo (rightmost image). 
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/imagine prompt: Towering Blue Gum Tree, silver-blue leaves shimmering 
in the sunlight, providing an iconic silhouette in the city park. The low poly 
style enhances its grandeur. Plain white removable background for 
transparency. --ar 4:5 

5. Discussion and Conclusion 

This investigation has shown an adaptation of the Software Design Pattern (SDP) 
model for the construction of AI-enabled design computing workflows and tools. 
Aspects of SDPs have been applied by others in design computing and in depth for the 
subfield of propagation-based parametric modelling, most prominently as Woodbury 
patterns (WPs). Those uses have clear design space exploration and pedagogical 
benefits but consider the SDP model as one precedent of many and, as one gap, do not 
specifically consider AI. Consequently, further gaps exist of which two were 
questioned here: the derivation and versatility of patterns in an AI context. 

Adapting the SDP model, the lead author demonstrated pattern derivation utilising 
the intuition and experience of the designer. Critical application of two WPs, as 
conceptual framings for a design computing tool, guided evolution of an initial 
computational study. Significantly, this direction occurred though clear congruence 
with the design problem as well as points of divergence. Incompatibilities prompted 
exploration of novel reaches of the design solution space, in contrast to the pattern 
chaining of Pemberton and Griffith in which a pattern is linked to its ancestors by its 
consonance alone. The resultant polymorphic feature pattern (PFP) is not asserted to 
be novel in the sense of Boden's H-creativity and it does not need to be: patterns capture 
past experience. Nonetheless, it is a P-creative, novel addition to this design computing 
practice scenario. This work is a complement to that of Yu and Gero and their call to 
generalise to patterns the design process transitions they inferred. It is, however, a 
single datapoint that illustrates a generalisation mechanism; group participant studies 
could offer valuable empirical evidence but the challenges of unadulteratedly recording 
design process decisions to the degree done so here would be considerable. 

The investigation exhibited versatility of patterns in respect to technology domains 
and to built environment considerations. The former had two aspects. In the selection 
of WPs, the design process exploited the encapsulated knowledge of past designers in 
parametric computing and applied it to the distinct Unity environment. Further, it 
demonstrated how a pattern may apply across an AI continuum of intelligent agents 
(IAs) by developing the PFP with an IA model of mere instinctual responsiveness and 
then showing how it can apply with contemporary, sophisticated AI models. While 
those outputs were not perfect – see the juvenile blue gum images of Figure 6 – they 
do provide a robust proof of concept. Regarding built environment considerations, this 
research shows how a pattern can operate not only on geometric elements, as in the 
precedents, but also broadly on actual built environment features. The derived novel 
PFP hence aids a freedom of action in expressing a feature with subsequent guidance 
– it facilitates exploring what-if scenarios on a micro scale. 

This pattern investigation and framework developed in a real-world project context. 
Stakeholder workshop feedback substantiated a reasonable design computing practice 
scenario took place. Although the primary research focus was at a design thinking level, 
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the pattern found has a measure of external validity despite its narrow spectrum of 
designer experience, insofar stakeholders favourably judged it in terms of its method 
and the design goal. The generative AI reuse also supports validity, as does background 
PFP use for the prototyping within a past study of different focus (Kimm et al., 2023). 

The adaptation of the SDP model in this paper signposts a way to further, broader 
adoption of patterns in industry by which design computing practitioners can be 
supported in their professional service to clients and society. They, with such patterns 
and as AI continually evolves, can apply existing knowledge flexibly across computing 
contexts and in consideration of features other than bare geometry. This research 
enlivens the toolkit available to practitioners to construct their own design computing 
workflows. It proposes a viable, enriching direction for further research into how 
architects may positively respond to AI advances and sustain their creative practice.  
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