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Abstract.  This project showcases a use case away from 
most other research in the field of generative AI in architecture. We 
present a workflow to generate new, three-dimensional spatial 
configurations of buildings by sampling the latent space of a graph auto-
encoder. Graph representations of three-dimensional buildings can 
store more data and hence reduce the loss of information from building 
to machine learning model compared to image- and voxel-based 
representations. Graphs do not only represent information about 
elements (nodes/pixels/etc.) but also the relationships between elements 
(edges). This is specifically helpful in architecture where we define 
space as an assemblage of physical elements which are all somehow 
connected (i.e., wall touches floor). Our method generates valuable, 
logical and original geometries that represent the architectural style 
chosen in the training data. These geometries are highly different from 
any image-based generation process and justify the importance of 
graph-based 3D geometry generation of architecture via machine 
learning. The method also introduces a novel conversion process from 
architecture to graph, an adapted decoder architecture, and a physical 
prototype to control the generation process, all making generative 
machine learning more applicable to a real-world scenario of designing 
a building.  

Keywords.  generative 3D architecture, generative graph machine 
learning, graph-based architecture, human-computer interaction, graph 
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1. Introduction 
The main player, image-based generative AI systems lack seriousness and logic when 
applied in a real-world design scenario, mainly due to their focus on the visual. Image 
Generation tools like Dall-E, Midjourney and Stable Diffusion produce images from 
text prompts. One or multiple generated images are used to extract information about 
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architectural concepts, geometry and materials to inform building designs. Here the 
image as the medium cannot offer logical or coherent information due to its pixel-based 
nature, and human architects need to perform a manual conversion into a working 
building design. This makes AI image generation great as an inspiration in the very 
early stage of design, but hard to apply to the following design process.  

In addition, photographs of buildings, floor plans, sections, etc. contain only 
compressed and partial information about building designs. In the world of computers 
this step of compressing is redundant (Carpo, 2017) and rather unhelpful for neural 
networks (NNs) to understand complex content.  

This work wants to suggest a different approach, showing the benefits of graphs 
and three-dimensional representations of buildings for generating new architecture. 
Graphs can contain more information from different domains, because they are not 
grid-based, and do not only represent information about elements (nodes, pixels, etc.) 
but also the relationships between nodes (Hamilton, 2020). 

Here, rather than focusing on visual information, the definition and 
generation of space are in the foreground, intending to give the architects a tool they 
can use hand in hand with their current design workflow. Compared with existing 
methods for architectural AI generation, the presented method generates three-
dimensional spatial arrangements that are more complex than those allowed by voxel 
grids. 

1.1. SUBSYMBOLIC AI 

Figure 1: Subsymbolic AI System finds high-level features in 3D buildings 

Symbolic AI focuses on teaching an AI system the rules of the game of chess. 
Subsymbolic AI only lets the NN play chess making the model learn the rules by its 
own (Mitchell, 2020).  

By using unlabelled data for training a generative AI system in architecture, the 
second described approach is applied. We try to make a deep neural network 
understand very complex, three-dimensional buildings, without giving it i.e., 
information about gravity (Fig. 1). Without this information, the NN must figure out 
that walls are always touching horizontal elements by itself, and then use this 
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knowledge when generating. As buildings are extensively more complex than images, 
this task of understanding the so-called high-level features becomes more difficult for 
the NN. In the following, we try to lower the complexity as much as possible while still 
maintaining the original idea of teaching an NN to generate three-dimensional 
buildings from scratch. 

1.2. STATE OF THE ART 
While there already is architectural research about graphs and graph neural networks 
in architecture (Alymani et al., 2022), it mostly focuses on classification tasks rather 
than generative ones. Alymani et al. use the dual graph representation for classification 
tasks with graph machine learning and already show promising results. The trend can 
also be seen in other research on generative architecture lately. Zhong et al. (2023) use 
graph representation learning in combination with a recursive neural network to 
generate 3D massing models of architecture, while other research uses layout graphs 
to generate 2D floorplans (Hu et al., 2020). In both cases, the results are far from perfect 
and not completely generalizable. Yet being based on graph representations, the 
models seem to be more capable of generating logical architectures than models built 
upon pixel- or voxel data (del Campo, 2022; Koh, 2020), where although the generated 
architectures are 3D and partially look stunning, they seem to still need manual or 
parametric postprocessing to represent a real-world building design. 

1.3. GRAPHS 
Buildings and graphs are deeply related because they both have the property of being 
non-discursive, meaning that they cannot be fully described by words or rules, but 
rather by their patterns and relations (Hillier, 1996). Early research on converting 
architectural ideas to graphs was already done in the 1970s inter alia by Christopher 
Alexander (1977) in his book "A Pattern Language", where he provides rules, patterns 
and grammar to any possible situation in buildings. There are different types of graphs, 
including undirected (topology graphs) and directed graphs. In the last two decades, 
directed graphs using Semantic Web Standards have been visible in the building 
industry often in combination with Building Information Modelling standards, 
focusing mainly on ontologies (McGlinn & Pauwels, 2022). Semantic Web Standards 
can include languages such as the Web Ontology Language, which is used for 
enriching the data with semantics in the form of ontologies. Ontologies represent 
knowledge about things and the relations between them (Elshani et al., 2023). Work 
on directed graphs using Semantic Web Standards in the building industry includes the 
translation of the IFC schema to an OWL language, ifcOWL (Beetz et al., 2009), BOT 
ontology (Rasmussen et al., 2020), the Building and Habitats object Model Ontology 
and workflow (Elshani et al., 2022), etc.  

Due to the construction of a custom dataset, in this project, the graph structure was 
simplified as much as possible resulting in an undirected graph holding mostly 
geometrical information in the node features and no edge features. In the future, the 
same method could be applied to much more detailed graphs as introduced here, 
resulting in more detailed, generated building designs. 
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2. Methodology 

2.1. DATASET 
Due to the lack of accessible 3D building datasets, a custom dataset needed to be 
constructed. One possibility would be to use one of many 2D floor plan datasets 
available (de las Heras et al., 2015; Kalervo et al., 2019; Wu et al., 2019) and extend 
the plans parametrically in the third dimension. The main advantage here is the great 
number of plans available to use for training the AI model. Conceptually however, it is 
hard to argue for the use of mostly unspecified floor plans which are only loosely 
connected to any architectural idea and style. In addition, a 2D to 3D conversion might 
defy any argument for a 3D-based AI model, when even the training data originally 
was 2D. The decision was taken to construct a simple dataset from scratch, where the 
biggest hurdle was to achieve a certain number of training data. Four well-known 
buildings from the modernist era were chosen to be remodelled and augmented each a 
hundred times. The augmentation was done parametrically by varying the position, 
rotation and dimensions of the individual building elements (wall, floor, ceiling) to a 
degree where the original spatial concept of the building would not be lost. The final 
dataset consists of 400 individual 3D buildings to train and test the model on. The four 
original houses are:  

● Mies van der Rohe's Barcelona Pavilion (1929) 

● Ray and Charles Eames' Eames House (1949) 

● Mies van der Rohe's Farnsworth House (1951) 

● Pierre Koenig's Stahl House (1960) 

Modernist buildings were chosen for their simplicity in the definition of space and their 
good documentation. In modernism, structural elements were separated from space-
defining ones, giving the architects more freedom in planning. This paired with the 
consistent use of right angles and geometrically simple volumes make the modernist 
style in architecture at least geometrically easy to understand, simplified and 
remodelled. 

2.2. CONVERSION FROM BUILDING TO GRAPH 

Figure 2: Conversion of the Barcelona Pavilion (M.v.d. Rohe) to a graph 
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 Figure 3: Left: Definition of a simple graph; Centre: Representation (A); Right: Representation (B) 

To make a 3D building machine-readable, it is converted into a graph. Preparing the 
data as a graph highly influences the output of the generative model, as the conversion 
is the first and the last step performed in training and generation. This process is done 
parametrically and sets the geometric limitations for the output.  

Each node in the graph contains geometric and material information about its 
respective physical element in the 3D model. Here, the advantage is made from the 
modernist buildings, which mostly allow being remodelled as 2D surfaces arranged in 
space. To keep the complexity low, the depth of the elements is not considered. The 
material of each element is described as either solid or transparent. Doors are not 
modelled but the space is left empty. Each element is described as a flat rectangle as 
visible in Figure 3. If the elements touch along any edge, they are linked in the graph 
by an edge (Fig. 2). The edges do not contain any features but are only used for message 
passing in the encoder. For the features of the nodes (elements), two versions were used 
to produce different results (Fig. 3), where (A) will be the default representation for the 
explanation of the model in the rest of the paper. Representation (A) represents one 
rectangular element by the X-, Y-, and Z- coordinates of its centre, the width and length 
of the rectangle and its orientation in space as a choice between the three world planes 
in the coordinate system. Representation (B) also includes the centre, width and height 
but uses the rotation of the surface's normal vector around World Z as information 
about orientation in space. (A) only allows three orientations of each element thus 
producing very static results. (B) gives the model more freedom but also enables more 
outcomes of the original style of the dataset. A representation with full freedom was 
also tried only using information from the four corner points, which resulted in too 
much sloping and uninterpretable results. 

2.3. AUTOENCODER MODEL 

A graph autoencoder as described first by Kipf and Welling (2016) was used to learn 
the features of the input architecture. The training data is unlabelled, thus while training 
the model is optimized only for matching the newly generated graph with the input 
graph. While the encoder consists of standard message passing layers (Hamilton et al., 
2018), the decoder does not make use of the graph structure but decodes the latent 
vector through linear layers. A graph-based message-passing decoder was not chosen 
because of the difficulty of reconstructing a full graph from just the flattened one-
dimensional latent vector (Guo & Zhao, 2022).  
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Figure 4: Definition of the used Graph Autoencoder Model 

Using flattened data in the decoder brings the following limitation for the model: All 
graphs (hence all different buildings in the training data) need to have the same number 
of nodes. If just message passing was used, only the number of node features would 
need to be the same, but here due to the decoder architecture, it is the case for both the 
number of node features and number of nodes. Of course, this highly limits the range 
in which the model can generate new architecture as the buildings always will have the 
same number of elements. This loss was accepted due to the gained simplicity in 
training the model and using it for generation.  The model was implemented using the 
Python machine learning framework PyTorch (Paszke et al., 2019) and its library 
PyTorch Geometric (Fey & Lenssen, 2019), which is specially written for graph 
machine learning. The final model used the following variables: 

● Epochs: 1000 

● Learning Rate: 0.001 

● Optimiser: Adam 

● Loss function: Mean Squared Error 

● Activation function: ReLu 

● Train, Validate, Test: 80%, 10%, 10% 

2.4. GENERATION 

Figure 5: Newly generated, three-dimensional buildings 
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We generate new buildings by sampling the latent space of the trained autoencoder. 
When sampling unknown data points of the latent space, we expect the model to apply 
its learned logic and generate a new design that combines, reinterprets and varies 
features of buildings from known data points in the same area.  

3. Results 
In Figure 5 you can see the resulting generated geometry which was sampled in one 
session with the goal of finding new, never seen and buildable 3D arrangements. In the 
following, three geometries will be further described to make the model as well as its 
results more understandable.  

3.1. EXAMPLES 

Figure 6: Left: Latent Space of the trained model; Right: Sampled new buildings 

On the left-hand side, Figure 6 shows the 3D latent space of the trained model. All 400 
buildings are mapped to their respective location in the latent space, showing that the 
model organised them in smaller groups mainly influenced by their affiliation to one 
of the original four modernist houses (colour) and their general orientation. 

3.1.1. Between Stahl and Farnsworth House (Fig. 6, top) 

While the slab alignments and sizes are still in the style of the Farnsworth House, the 
vertical elements are already arranged in the "L"- pattern as known from the Stahl 
House. The confused arrangement of the vertical elements results from the principle of 
"geometric travel" between known data points in the latent space. As usual in latent 
walks, when travelling between known geometry, the Autoencoder needs to negotiate 
the known geometries around the unknown point and consider any logic and rules 
learned when training. This sometimes results in the displayed semi-logical layouts of 
the building. 

Between Barcelone Pavilion (orange)
and Farnsworth House (blue)

Corner Eames House (red)

[0.05, 0.85, 0.21]

[0.45,0.33,0.32]

[0.89, 0.35, 0.60]

Between Stahl House (green)
and Farnsworth House (blue)

165



E. BAUSCHER, A. DAI, D. ELSHANI AND T. 
WORTMANN 

3.1.2. Between Barcelona Pavilion and Farnsworth House (Fig. 6, centre) 
Here the model negotiates the concept of directionality from the Barcelona Pavilion 
with the unidirectional floor plan of the Farnsworth House. In general, the Autoencoder 
finds specific arrangements of groups of elements in the training data and tries to 
reproduce this arrangement in the bigger context of the full, newly generated building. 

3.1.3. Corner Eames House (Fig. 6, bottom) 
The sampled data point here is in proximity to where the model mapped most of the 
augmented Eames Houses in the latent space. The model discovered the two separated 
living areas along the long wall. In comparison to the original, one area is mirrored 
along the wall, creating a new layout, while maintaining most of the other space 
elements one can find in the original.  

3.2. APPLICATION 

Figure 7: Photograph of the physical setup for using the model 

To make the generative model approachable and usable for designers and architects, a 
physical prototype was built and connected with the Rhino/Grasshopper interface. The 
prototype consists of three sliders representing the three latent variables of the AI 
model. As shown in Figure 7, an architect can use those sliders to adjust the generated 
output in real-time. On the screen, one sees information about the location in the latent 
space as well as the generated 3D model in real-time.  

This very intuitive way of generating new architecture makes the concept of the 
latent space very understandable even to non-experienced architects. It also emphasises 
the importance of the tool itself, which is needed to make research in architecture 
accessible to all designers and architects. 

4. Discussion 

Compared with pixel- and voxel-based generation, the presented method has the 
following advantages: (1) It works with three-dimensional geometries that do not need 
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to follow any grid structure. (2) The graph representations contain more information 
that the model can learn from. (3) It presents a very intuitive, approachable and 
understandable generation tool for architects. 

However, the current version suffers from the following disadvantages: (1) The 
qualities and availabilities of 3D datasets to use for training. (2) The low amount of 
already existing knowledge and research done in the field of graph-based, 3D 
generative AI systems in architecture. (3) The absence of an objective evaluation 
method for the generated results. 

The presented method does not yet make use of any evaluation method other than 
the designer's eye. Since technically in training the only evaluation of the decoded 
latent space is its geometrical deviation from the originally inputted architecture, 
nothing else is needed for a working generation process. By using unlabelled data, we 
expect the model to learn the essential features of the training set by itself. Here the 
training set is defined as good architecture, and based on the idea of subsymbolic AI, 
the model can then generate new, good architecture, even from unknown data points 
in the latent space. Of course, this statement is insufficient, and one could achieve more 
control as well as better results by labelling the training data. These labels could include 
data from programmatic, environmental or structural simulations which can be 
produced with the already existing three-dimensional data. In a more industrial setting, 
it could also be values about costs, statistics on efficiency, used materials, etc.  

To make the results more usable and realistic, further work can include labels for 
training and generating as well as extending the dataset with non-planar geometries. 
The model itself can also be redesigned to be a neurosymbolic AI system, combining 
a graph-based NN with a rule-based NN to enable an even deeper understanding of 
buildings (Sheth et al., 2023).  
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