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Abstract. At present, 3D reconstruction from images has made notable 
advancements in simple, small-scale scenes, but faces significant 
challenges in intricate, expansive architectural scenes. Focusing on the 
early stage of  design stage, we present Drag2Build, a tool for 
converting images into point clouds for 3D reconstruction and 
modification in detailed architectural contexts. Our first step involved 
the creation of ArchiNet, a specialized 3D reconstruction dataset 
dedicated to elaborate architectural scenes. Next, we developed a 3D 
reconstruction approach using a conditional denoising diffusion model, 
enhanced by incorporating a model for segmenting objects, thereby 
improving segmentation and identification in complex scenes. 
Additionally, our system features an interactive component that allows 
for immediate modification of 2D images via an easy drag-and-drop 
action, synchronously updating 3D architectural point clouds. The 
performance of Drag2Build in 3D reconstruction precision was 
assessed and benchmarked against mainstream methods using 
ArchiNet. The experiments showed that our approach is capable of 
producing high-quality 3D point clouds, facilitating swift editing and 
efficient handling of intricate backgrounds. 

Keywords.  3D building Generation, Diffusion Model, Single Image 
Reconstruction, DragDiffusion. 

1. Introduction 
The recent progress in transforming 2D images into  3D models significantly benefits 
spatial data capture and is crucial in fields like GIS, and City Modelling(Melas-Kyriazi 
et al., 2015). It's important in Architecture, Engineering, and Construction (AEC), with 
uses from Building Modeling to design and interior projects. However,this field needs 
further research, particularly during AEC's design stage. 

Image-based 3D reconstruction provides an efficient design feedback method in early 
AEC stages. Yet, current studies often use uniform 3D objects such as hydrants, lacking 
diverse architectural scenes(Chang et al., 2015). This limits precision and adaptability 
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in reconstructing complex architectural scenes. 

Architects need a precise, affordable, fast 3D reconstruction method for early-stage 
complex architectural designs. It should allow easy 3D model edits for preview. We 
propose Drag2Build, a point cloud diffusion model for single-view architectural 
images, utilizing a unique single-image reconstruction method and an advanced 
segmentation model. It updates 3D models in real-time with user inputs, enhancing 
accuracy and editability.Our contributions are outlined as follows: 

● We have collected ArchiNet, a specialized architectural dataset featuring 
comprehensive images (architectural line drawings, shaded diagrams, and 
renderings) alongside corresponding 3D architectural point cloud data, complete 
with precise camera parameters.  

● We propose Drag2Build, a novel interactive 3D reconstruction framework, based 
on a 3D point cloud diffusion model, capable of editing through drag-and-drop 
actions. This method generates sparse yet precise 3D point clouds from single 
images lacking depth information, improving segmentation and recognition with the 
Segment-Anything object segmentation model. Architects can conveniently adjust 
and refine the generated 3D models. 

● Our extensive experimental evaluations and comparisons with existing baselines 
establish that our algorithm excels in producing high-quality 3D point clouds, 
enabling rapid editing and effective handling of complex background scenes. 

 
Figure 1. Utilizing Drag2Build, architects are now able to accomplish single-view 3D 

reconstructions within the design workflow by transforming sketches into three-dimensional models. 
This platform allows for immediate alterations to 2D illustrations, with concurrent updates being 

mirrored in the 3D architectural point cloud via straightforward drag-and-drop action.  
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2. Related Work 
3D BUILDING GENERATION 

The integration of computer technology and architecture has advanced significantly 
with the automated generation of 3D models(Wei et al., 2023). Traditional methods 
relied on fixed rules, limiting variety and increasing architects’ workload (Li et al., 
2021). Deep learning has brought new opportunities, merging 3D model generation 
with advanced algorithms (Alidoost. et al., 2019).However, these methods often face 
challenges in complex scenes and lack flexibility in modifications. Prior research, like 
Wei's diffusion point cloud model, had limitations in datasets and camera parameters, 
leading to less accurate reconstructions(Wei et al., 2023).Our approach innovates in 
3D architectural reconstruction using a single-view, conditioned projection point-cloud 
diffusion model. This method enhances point cloud accuracy and allows real-time 
image-based modifications through user-friendly drag-and-drop interactions, 
contributing meaningfully to the field of 3D architectural modeling. 

SINGLE IMAGE RECONSTRUTION 

3D  reconstruction from Single-image, blending computer vision and graphics, aims to 
create 3D scenes from a single 2D image. Traditional methods used 2D and 3D 
convolutional networks for this transformation, but often fell short in results. With deep 
learning, the Neural Radiance Field (NeRF) approach, requiring multiple images from 
different angles, has gained traction (Wang et al., 202) . However, its single-view 
performance remains subpar. 

The rise of diffusion models has led to new single-image 3D reconstruction techniques. 
3DFuse enhances diffusion models for better 3D consistency, while Zero123 uses them 
to render new perspectives based on camera position. OpenAI's Point-E(Nichol et al., 
2022) and Shap-E (Jun et al., 2023) use internal models and latent function parameters 
for point clouds and textured meshes. However, these methods largely rely on common 
object datasets like Shapenet, with limited resource in specialized architectural 
datasets, and struggle with complex backgrounds. 

POINT-BASED EDITING 

To enhance detailed editing, a variety of point-based editing techniques have been 
introduced. Among these, DragGAN showcased remarkable capabilities for drag-
based adjustments, utilizing two key elements: (1) the optimization of latent variable 
codes to guide the processing point towards its intended position, and (2) a tracking 
system to monitor the processing point's movement(Pan et al., 2023). Expanding upon 
this, Mou et al. adapted DragGAN's editing approach for diffusion models, proving its 
adaptability in various fields. However, despite these methods offering flexible editing 
between 2D images, they fall short in directly converting 2D edits into 3D structures, 
a crucial  need in architectural design workflows. 

3. METHOD 

In this part, we explore the methodologies utilized in our innovative framework, 
Drag2Build. Our platform effectively combines SAM(Kirillovet al., 2022) with 
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methods for converting single images to point clouds, relying on 3D diffusion models. 
The primary objective is to tackle the intricate task of creating editable 3D architectural 
reconstructions from single image.Our approach introduces an intuitive, interactive 
editing feature, capitalizing on the distinct advantages of each integrated component. 
Through straightforward drag-and-drop actions, users can edit 2D images, and these 
modifications are immediately reflected in the corresponding 3D point cloud. This 
integration significantly enhances both the convenience and efficiency of the 
architectural design. 

 

 
Figure 2. Drag2Build  reconstructs architectural point clouds from a single input image and its 

camera pose in three steps. First, the SAM precisely identifies and segments buildings. Second, the 
point-based image editing model uses the UNet portion of the LoRA fine-tuned diffusion model to 

make interactive modifications. Third, the 3D point-cloud diffusion model incrementally generates a 
point cloud that matches the input image. 

3.1. SAM 
 The SAM is introduced to extract buildings within the given image. To be specific, 
SAM processes an image, denoted as I, along with a prompt p. an image I and prompt 
p. SAM then produces a accurate segmentation mask M that effectively masks the 
background. The process involves the application of an affine transformation to 
produce localized image segments I!  that encompass the bounding box, where the 
symbol ⨀ denotes element-wise multiplication using the image mask as follows:   

M = SAM(I, p);	I! = 	Affine(M	⨀	I; b)#(1) 
SAM is a state-of-the-art object segmentation model capable of effectively handling 
multiple object categories. It addresses the challenge of extracting the principal 
architectural elements from images with complex scenes. 

3.2. POINT-BASED EDITING 
Inspired by the impressive success of DragGAN and DragDiffusion, we integrated a 
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similar approach into our model to address the challenges of interactive 2D and 3D 
modifications in the architectural design process. Initially, we fine-tune the UNet of the 
diffusion model using LoRA (Augustin et al., 2016) to enhance its accuracy in 
encoding the features of the input image. Next, we optimize the latent of the diffusion 
based on user instructions, such as the positions of the handles and target points, along 
with an optional mask to specify the editable area. This step is crucial to achieve the 
desired point-based interactive editing. Considering the Markov chain of the diffusion 
model's latent representation, this step focuses on optimizing the latent representation 
of single-step diffusion to enhance efficiency and efficacy during the editing process. 
After completing the optimization of the latent representations, the final edited result is 
obtained through a denoising step. Similar to DragDiffusion, we employ the Latent-
MasaCtrl mechanism to improve the consistency between the original image and 
edited outcome.As for the differences from DragDiffusion, we have changed the base 
model and employed ProbSparse Attention, which reduces interaction time and 
prevents overfitting. 

3.3. PROJECTION CONDITONAL POINT CLOUD DIFFUSION MODEL-
ING 
In machine learning, diffusion denoising probabilistic models are famous for their 
ability to produce images and data of high quality .These models utilize a progressive 
approach of noise integration, incorporating disturbances into a sample, referred to as , 
rooted from the targeted data distribution .Each stage's noise intensity is regulated 
according to the variance values in , as described below: 

q(X"|X"#$) = 𝒩8X"; 	91 − β"X"#$, β"I<#(2) 
Every q(X"|X"#$)  follows a Gaussian distribution, determined through the widely 
employed method of reparameterization, as follows:   

                                        q(X"|X%) = 9α?"X% + ϵ91 − α?"#(3), 
where α" = 1 − β", α?" = ∏ α&"

&'% , and ϵ~𝒩(0, I). 
In the development of  a generative model,  the reverse process is important. It begins 
with a noisy distribution  q(X() , and reduces noise in the data points, ultimately 
producing samples that closely mimic the intended distribution q(X%) .In a 3D point 
cloud having N points, which is considered as an entity with 3N- dimensions, we train 
the diffusion model s) ∶ 	ℝ*+ → ℝ*+. This framework is to enhance the accuracy of 
point positions within a spherical Gaussian domain by converting them into 
recognizable shapes. The model, at each phase, estimates the positional variance of 
each point relative to its current location, and repeatedly applies this methodology to 
generate a sample aligned with the target distributionq(X%). 
This network is specifically trained to anticipate the noise ϵ ∈ ℝ*+  injected in the 
preceding step. It is made by employing  the L, loss, which calculates the disparity 
between the groundtruths and those noise values as below:   
																																														ℒ = E-~𝒩(%,2)[‖ϵ − s)(X", t)‖,,]#(4). 
In the prediction stage, a arbitrary  point cloud X(	~	N(0, I*+)	is extracted from a 
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Gaussian distribution encompassing 3N dimensions. A backward process is then  
initiated to generate create sample instances X%. In each stage of this sequence, the 
average value of the approximation of q(X"#$|X") is derived from predictions)(X", t), 
which is subsequently utilized as  a foundational element to sample q(X"#$|X").  
In this framework, 3D reconstruction is viewed as a generative process with condition, 
where the distribution q(X%|I, V) is dependent on the provided input image I and its  
camera view V. To tackle the challenge of geometric consistency, our method involves 
mapping the image to partially denoised points during each phase of the diffusion 
sequence. At first, the image  undergoes transformation into a dense feature volume, 
accomplished through the application of a standard 2D image model, such as a 
convolutional neural network (CNN) or a Vision Transformer(ViT). Before every 
diffusion step, we map the aforementioned features onto a point cloud.  

4. EXPERIMENTS AND RESULTS 

4.1. DATASET 
Collecting a 3D architectural model database is complex, time-consuming, and 
resource-intensive, involving data collection, modeling adjustments, and annotations. 
Traditional 3D point-cloud datasets often face incompleteness, inaccuracies, and 
limited styles (Li et al., 2021). To evaluate our method, we created ArchiNet, a diverse 
dataset with 4,688 SketchUp models from 132 architecture students (with a mix of 95 
undergraduates and 37 postgraduates) and 675,180 images, each with detailed camera 
settings. We initially processed these models in Grasshopper to transform them into 
standardized point-cloud files (PLY format), and subsequently utilized Matplotlib to 
export images of each PLY file from 36 different angles, ensuring a comprehensive 
view. Our collection includes three visual types: architectural line drawings (AL), 
shading diagrams (AS), and renderings (AR), each with point cloud data and individual 
masks. The dataset is divided into training, testing, and validation sets with a ratio of 
92:21:21, facilitating a balanced evaluation of our models across diverse architectural 
styles and complexities. 

 
Figure 3. Dataset Collection Process Diagram 
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Figure 4. Example instances from our ArchiNet dataset.ArchiNet 3D assets are semantically diverse, 
highquality, and paired with camera parameters 

4.2. EXPERIMENTS DETAILS 
In our research, we utilized a high-performance workstation equipped with two 
NVIDIA A6000 GPUs, each boasting 48 GB of RAM, and powered by an Intel(R) 
Xeon(R) Gold 6326 CPU. The training phase leveraged our ArchiNet dataset, 
employing an Adam optimizer. The parameters set for this phase included a learning 
rate of 0.0001, a batch size of 24, and a cap of 100,000 steps for training. For uniformity 
and consistency in our analysis, each 3D point-cloud model was standardized into a 
OBJ file format, containing precisely 8192 points. 

4.3. BENCHMARKS AND METRICS 

In our study, we compared our model's point clouds with others, focusing on intricate 
background handling and point-cloud fidelity due to our task's interactive nature. We 
retrained 3D-R2N2 using our dataset, sticking to its original settings, to create voxel 
files from images, later converted to point clouds. For Point-E(Nichol et al., 2022), we 
used official code and models, following their single-image 3D reconstruction 
examples. These predictions required no extra scaling. With Shap-E(Jun et al., 2023), 
we maintained hyperparameters and followed their single-image examples, converting 
meshes to point clouds for consistency in distribution and count.Our evaluation was 
based on two key metrics: 

Fréchet Inception Distance (FID): This metric assesses the disparity between the 
generated and actual point clouds by comparing the covariance of point cloud features. 
Lower FID values suggest a closer resemblance to real point clouds. 

Chamfer Distance (CD): CD is a prevalent metric for gauging the likeness between 
two point cloud sets, calculating the mean nearest-point distance between them. 
Smaller CD values indicate higher similarity. 

4.4. QUANTITATIVE RESULTS 

Tables 1-2 provide a comprehensive summary of the performance evaluations 
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conducted on the ArchiNet dataset. The data conclusively shows that our model 
surpasses competing models in all four evaluated metrics. When comparing the mean 
scores across the three datasets (AL, AS, and AR), our model shows a substantial 
reduction in Chamfer Distance (CD) results by 42.3%, 43.2%, and 64.2% compared to 
Shap-E(Jun et al., 2023), Point-E(Nichol et al., 2022), and 3D-R2N2. Concurrently, it 
demonstrates a remarkable increase in F-Scores by 25%, 104%, and 112%. This 
superiority of our model in terms of reconstruction accuracy and detail capture is 
evident. Additionally, the results highlight the variability in the adaptability of different 
models to distinct types of images. For example, Shap-E exhibits subpar performance 
with line drawing datasets as opposed to other types, while Point-E struggles more with 
rendered image data. In contrast, our methodology maintains consistent and stable 
performance across all three data categories. 

Table 1.CD results on ArchiNet. The best results are indicated in bold. 
Method AL AS AR 

Ours 
Shap-E 
Point-E 

3D-R2N2 

0.0828 
0.1703 
0.1512 
0.2276 

0.0800 
0.1240 
0.1505 
0.2241 

0.0799 
0.1263 
0.1262 
0.2240 

Table 2. F-Score results on ArchiNet. The best results are indicated in bold . 
Method AL AS AR 

Ours 
Shap-E 
Point-E 

3D-R2N2 

0.6688 
0.4900 
0.3159 
0.3377 

0.6894 
0.5771 
0.3066 
0.3144 

0.6848 
0.5781 
0.3685 
0.3152 

4.5. QUALITATIVE RESULTS 
Beyond the quantitative evaluation, qualitative results are also shown for the ArchiNet 
dataset (Figures 5-8). These visual examples illustrate how our technique not only 
facilitates immediate, user-friendly interaction with 2D images via straightforward 
drag-and-drop actions, directly reflecting changes in 3D architectural point clouds, but 
also precisely captures intricate architectural elements like platforms, extended 
volumes, and  exterior staircases. 

 
Figure 5: Example results from different methods on the ArchiNet  dataset. The image demonstrates 

our model's ability to modify 3d shapes by editing images 
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Figure 6.Example results from different methods on the ArchiNet AR dataset and the ArchiNet AL 
dataset. The first column shows the input image, and the second column displays the ground truth. 

The subsequent four columns each showcase the point cloud reconstruction results of different 
models.  

 
Figure 7. Example results from diverse methodologies applied to the ArchiNet AS dataset are 

shown.  

 
Figure 8.Examples of diversity in the results. The far left column presents a sample image selected 
from the architectural line drawing collection, notable for its notably ambiguous form. Subsequent 
images illustrate outputs generated by our model using seven distinct random seeds. Demonstrating 
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its proficiency, our model consistently generates considerable shape variations, all the while aligning 
accurately with the perspective of the input image from the reference vantage point. 

5. CONCLUSION AND FUTURE WORK 
The Drag2Build framework marks a meaningful progress in 3D building generation 
and interactive architectural design. Looking ahead, our objectives are set towards 
enhancing and expanding our model in several key areas: 

Synergy with Digital Modeling Platforms: Our goal is to craft plugins or tools that 
seamlessly blend our framework with established digital modeling applications, 
harnessing the combined strengths of both systems. 

Enhanced Precision in Editing: We are dedicated to refining the accuracy of our drag-
and-drop features, focusing on the meticulous modification of small-scale elements and 
intricate details within 3D point clouds. 

Advanced Point Cloud Processing: We plan to evolve point cloud processing into 
formats like meshes, making editing simpler for architects, thus enhancing practicality 
and utility in real-world architectural applications. 
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